Sort by:
Page 22 of 38375 results

Dynamic frame-by-frame motion correction for 18F-flurpiridaz PET-MPI using convolution neural network

Urs, M., Killekar, A., Builoff, V., Lemley, M., Wei, C.-C., Ramirez, G., Kavanagh, P., Buckley, C., Slomka, P. J.

medrxiv logopreprintJul 1 2025
PurposePrecise quantification of myocardial blood flow (MBF) and flow reserve (MFR) in 18F-flurpiridaz PET significantly relies on motion correction (MC). However, the manual frame-by-frame correction leads to significant inter-observer variability, time-consuming, and requires significant experience. We propose a deep learning (DL) framework for automatic MC of 18F-flurpiridaz PET. MethodsThe method employs a 3D ResNet based architecture that takes 3D PET volumes and outputs motion vectors. It was validated using 5-fold cross-validation on data from 32 sites of a Phase III clinical trial (NCT01347710). Manual corrections from two experienced operators served as ground truth, and data augmentation using simulated vectors enhanced training robustness. The study compared the DL approach to both manual and standard non-AI automatic MC methods, assessing agreement and diagnostic accuracy using minimal segmental MBF and MFR. ResultsThe area under the receiver operating characteristic curves (AUC) for significant CAD were comparable between DL-MC MBF, manual-MC MBF from Operators (AUC=0.897,0.892 and 0.889, respectively; p>0.05), standard non-AI automatic MC (AUC=0.877; p>0.05) and significantly higher than No-MC (AUC=0.835; p<0.05). Similar findings were observed with MFR. The 95% confidence limits for agreement with the operator were {+/-}0.49ml/g/min (mean difference = 0.00) for MFR and {+/-}0.24ml/g/min (mean difference = 0.00) for MBF. ConclusionDL-MC is significantly faster but diagnostically comparable to manual-MC. The quantitative results obtained with DL-MC for MBF and MFR are in excellent agreement with those manually corrected by experienced operators compared to standard non-AI automatic MC in patients undergoing 18F-flurpiridaz PET-MPI.

Unsupervised Cardiac Video Translation Via Motion Feature Guided Diffusion Model

Swakshar Deb, Nian Wu, Frederick H. Epstein, Miaomiao Zhang

arxiv logopreprintJul 1 2025
This paper presents a novel motion feature guided diffusion model for unpaired video-to-video translation (MFD-V2V), designed to synthesize dynamic, high-contrast cine cardiac magnetic resonance (CMR) from lower-contrast, artifact-prone displacement encoding with stimulated echoes (DENSE) CMR sequences. To achieve this, we first introduce a Latent Temporal Multi-Attention (LTMA) registration network that effectively learns more accurate and consistent cardiac motions from cine CMR image videos. A multi-level motion feature guided diffusion model, equipped with a specialized Spatio-Temporal Motion Encoder (STME) to extract fine-grained motion conditioning, is then developed to improve synthesis quality and fidelity. We evaluate our method, MFD-V2V, on a comprehensive cardiac dataset, demonstrating superior performance over the state-of-the-art in both quantitative metrics and qualitative assessments. Furthermore, we show the benefits of our synthesized cine CMRs improving downstream clinical and analytical tasks, underscoring the broader impact of our approach. Our code is publicly available at https://github.com/SwaksharDeb/MFD-V2V.

Hybrid strategy of coronary atherosclerosis characterization with T1-weighted MRI and CT angiography to non-invasively predict periprocedural myocardial injury.

Matsumoto H, Higuchi S, Li D, Tanisawa H, Isodono K, Irie D, Ohya H, Kitamura R, Kaneko K, Nakazawa M, Suzuki K, Komori Y, Hondera T, Cadet S, Lee HL, Christodoulou AG, Slomka PJ, Dey D, Xie Y, Shinke T

pubmed logopapersJun 30 2025
Coronary computed tomography angiography (CCTA) and magnetic resonance imaging (MRI) can predict periprocedural myocardial injury (PMI) after percutaneous coronary intervention (PCI). We aimed to investigate whether integrating MRI with CCTA, using the latest imaging and quantitative techniques, improves PMI prediction and to explore a potential hybrid CCTA-MRI strategy. This prospective, multi-centre study conducted coronary atherosclerosis T1-weighted characterization MRI for patients scheduled for elective PCI for an atherosclerotic lesion detected on CCTA without prior revascularization. PMI was defined as post-PCI troponin-T > 5× the upper reference limit. Using deep learning-enabled software, volumes of total plaque, calcified plaque, non-calcified plaque (NCP), and low-attenuation plaque (LAP; < 30 Hounsfield units) were quantified on CCTA. In non-contrast T1-weighted MRI, high-intensity plaque (HIP) volume was quantified as voxels with signal intensity exceeding that of the myocardium, weighted by their respective intensities. Of the 132 lesions from 120 patients, 43 resulted in PMI. In the CCTA-only strategy, LAP volume (P = 0.012) and NCP volume (P = 0.016) were independently associated with PMI. In integrating MRI with CCTA, LAP volume (P = 0.029), and HIP volume (P = 0.024) emerged as independent predictors. MRI integration with CCTA achieved a higher C-statistic value than CCTA alone (0.880 vs. 0.738; P = 0.004). A hybrid CCTA-MRI strategy, incorporating MRI for lesions with intermediate PMI risk based on CCTA, maintained superior diagnostic accuracy over the CCTA-only strategy (0.803 vs. 0.705; P = 0.028). Integrating MRI with CCTA improves PMI prediction compared with CCTA alone.

Derivation and validation of an artificial intelligence-based plaque burden safety cut-off for long-term acute coronary syndrome from coronary computed tomography angiography.

Bär S, Knuuti J, Saraste A, Klén R, Kero T, Nabeta T, Bax JJ, Danad I, Nurmohamed NS, Jukema RA, Knaapen P, Maaniitty T

pubmed logopapersJun 30 2025
Artificial intelligence (AI) has enabled accurate and fast plaque quantification from coronary computed tomography angiography (CCTA). However, AI detects any coronary plaque in up to 97% of patients. To avoid overdiagnosis, a plaque burden safety cut-off for future coronary events is needed. Percent atheroma volume (PAV) was quantified with AI-guided quantitative computed tomography in a blinded fashion. Safety cut-off derivation was performed in the Turku CCTA registry (Finland), and pre-defined as ≥90% sensitivity for acute coronary syndrome (ACS). External validation was performed in the Amsterdam CCTA registry (the Netherlands). In the derivation cohort, 100/2271 (4.4%) patients experienced ACS (median follow-up 6.9 years). A threshold of PAV ≥ 2.6% was derived with 90.0% sensitivity and negative predictive value (NPV) of 99.0%. In the validation cohort 27/568 (4.8%) experienced ACS (median follow-up 6.7 years) with PAV ≥ 2.6% showing 92.6% sensitivity and 99.0% NPV for ACS. In the derivation cohort, 45.2% of patients had PAV < 2.6 vs. 4.3% with PAV 0% (no plaque) (P < 0.001) (validation cohort: 34.3% PAV < 2.6 vs. 2.6% PAV 0%; P < 0.001). Patients with PAV ≥ 2.6% had higher adjusted ACS rates in the derivation [Hazard ratio (HR) 4.65, 95% confidence interval (CI) 2.33-9.28, P < 0.001] and validation cohort (HR 7.31, 95% CI 1.62-33.08, P = 0.010), respectively. This study suggests that PAV up to 2.6% quantified by AI is associated with low-ACS risk in two independent patient cohorts. This cut-off may be helpful for clinical application of AI-guided CCTA analysis, which detects any plaque in up to 96-97% of patients.

Multicenter Evaluation of Interpretable AI for Coronary Artery Disease Diagnosis from PET Biomarkers

Zhang, W., Kwiecinski, J., Shanbhag, A., Miller, R. J., Ramirez, G., Yi, J., Han, D., Dey, D., Grodecka, D., Grodecki, K., Lemley, M., Kavanagh, P., Liang, J. X., Zhou, J., Builoff, V., Hainer, J., Carre, S., Barrett, L., Einstein, A. J., Knight, S., Mason, S., Le, V., Acampa, W., Wopperer, S., Chareonthaitawee, P., Berman, D. S., Di Carli, M. F., Slomka, P.

medrxiv logopreprintJun 30 2025
BackgroundPositron emission tomography (PET)/CT for myocardial perfusion imaging (MPI) provides multiple imaging biomarkers, often evaluated separately. We developed an artificial intelligence (AI) model integrating key clinical PET MPI parameters to improve the diagnosis of obstructive coronary artery disease (CAD). MethodsFrom 17,348 patients undergoing cardiac PET/CT across four sites, we retrospectively enrolled 1,664 subjects who had invasive coronary angiography within 180 days and no prior CAD. Deep learning was used to derive coronary artery calcium score (CAC) from CT attenuation correction maps. XGBoost machine learning model was developed using data from one site to detect CAD, defined as left main stenosis [&ge;]50% or [&ge;]70% in other arteries. The model utilized 10 image-derived parameters from clinical practice: CAC, stress/rest left ventricle ejection fraction, stress myocardial blood flow (MBF), myocardial flow reserve (MFR), ischemic and stress total perfusion deficit (TPD), transient ischemic dilation ratio, rate pressure product, and sex. Generalizability was evaluated in the remaining three sites--chosen to maximize testing power and capture inter-site variability--and model performance was compared with quantitative analyses using the area under the receiver operating characteristic curve (AUC). Patient-specific predictions were explained using shapley additive explanations. ResultsThere was a 61% and 53% CAD prevalence in the training (n=386) and external testing (n=1,278) set, respectively. In the external evaluation, the AI model achieved a higher AUC (0.83 [95% confidence interval (CI): 0.81-0.85]) compared to clinical score by experienced physicians (0.80 [0.77-0.82], p=0.02), ischemic TPD (0.79 [0.77-0.82], p<0.001), MFR (0.75 [0.72-0.78], p<0.001), and CAC (0.69 [0.66-0.72], p<0.001). The models performances were consistent in sex, body mass index, and age groups. The top features driving the prediction were stress/ischemic TPD, CAC, and MFR. ConclusionAI integrating perfusion, flow, and CAC scoring improves PET MPI diagnostic accuracy, offering automated and interpretable predictions for CAD diagnosis.

Development of a deep learning algorithm for detecting significant coronary artery stenosis in whole-heart coronary magnetic resonance angiography.

Takafuji M, Ishida M, Shiomi T, Nakayama R, Fujita M, Yamaguchi S, Washiyama Y, Nagata M, Ichikawa Y, Inoue Katsuhiro RT, Nakamura S, Sakuma H

pubmed logopapersJun 30 2025
Whole-heart coronary magnetic resonance angiography (CMRA) enables noninvasive and accurate detection of coronary artery stenosis. Nevertheless, the visual interpretation of CMRA is constrained by the observer's experience, necessitating substantial training. The purposes of this study were to develop a deep learning (DL) algorithm using a deep convolutional neural network to accurately detect significant coronary artery stenosis in CMRA and to investigate the effectiveness of this DL algorithm as a tool for assisting in accurate detection of coronary artery stenosis. Nine hundred and fifty-one coronary segments from 75 patients who underwent both CMRA and invasive coronary angiography (ICA) were studied. Significant stenosis was defined as a reduction in luminal diameter of >50% on quantitative ICA. A DL algorithm was proposed to classify CMRA segments into those with and without significant stenosis. A 4-fold cross-validation method was used to train and test the DL algorithm. An observer study was then conducted using 40 segments with stenosis and 40 segments without stenosis. Three radiology experts and 3 radiology trainees independently rated the likelihood of the presence of stenosis in each coronary segment with a continuous scale from 0 to 1, first without the support of the DL algorithm, then using the DL algorithm. Significant stenosis was observed in 84 (8.8%) of the 951 coronary segments. Using the DL algorithm trained by the 4-fold cross-validation method, the area under the receiver operating characteristic curve (AUC) for the detection of segments with significant coronary artery stenosis was 0.890, with 83.3% sensitivity, 83.6% specificity and 83.6% accuracy. In the observer study, the average AUC of trainees was significantly improved using the DL algorithm (0.898) compared to that without the algorithm (0.821, p<0.001). The average AUC of experts tended to be higher with the DL algorithm (0.897), but not significantly different from that without the algorithm (0.879, p=0.082). We developed a DL algorithm offering high diagnostic accuracy for detecting significant coronary artery stenosis on CMRA. Our proposed DL algorithm appears to be an effective tool for assisting inexperienced observers to accurately detect coronary artery stenosis in whole-heart CMRA.

AI-Derived Splenic Response in Cardiac PET Predicts Mortality: A Multi-Site Study

Dharmavaram, N., Ramirez, G., Shanbhag, A., Miller, R. J. H., Kavanagh, P., Yi, J., Lemley, M., Builoff, V., Marcinkiewicz, A. M., Dey, D., Hainer, J., Wopperer, S., Knight, S., Le, V. T., Mason, S., Alexanderson, E., Carvajal-Juarez, I., Packard, R. R. S., Rosamond, T. L., Al-Mallah, M. H., Slipczuk, L., Travin, M., Acampa, W., Einstein, A., Chareonthaitawee, P., Berman, D., Di Carli, M., Slomka, P.

medrxiv logopreprintJun 28 2025
BackgroundInadequate pharmacologic stress may limit the diagnostic and prognostic accuracy of myocardial perfusion imaging (MPI). The splenic ratio (SR), a measure of stress adequacy, has emerged as a potential imaging biomarker. ObjectivesTo evaluate the prognostic value of artificial intelligence (AI)-derived SR in a large multicenter 82Rb-PET cohort undergoing regadenoson stress testing. MethodsWe retrospectively analyzed 10,913 patients from three sites in the REFINE PET registry with clinically indicated MPI and linked clinical outcomes. SR was calculated using fully automated algorithms as the ratio of splenic uptake at stress versus rest. Patients were stratified by SR into high ([&ge;]90th percentile) and low (<90th percentile) groups. The primary outcome was major adverse cardiovascular events (MACE). Survival analysis was conducted using Kaplan-Meier and Cox proportional hazards models adjusted for clinical and imaging covariates, including myocardial flow reserve (MFR [&ge;]2 vs. <2). ResultsThe cohort had a median age of 68 years, with 57% male patients. Common risk factors included hypertension (84%), dyslipidemia (76%), diabetes (33%), and prior coronary artery disease (31%). Median follow-up was 4.6 years. Patients with high SR (n=1,091) had an increased risk of MACE (HR 1.18, 95% CI 1.06-1.31, p=0.002). Among patients with preserved MFR ([&ge;]2; n=7,310), high SR remained independently associated with MACE (HR 1.44, 95% CI 1.24-1.67, p<0.0001). ConclusionsElevated AI-derived SR was independently associated with adverse cardiovascular outcomes, including among patients with preserved MFR. These findings support SR as a novel, automated imaging biomarker for risk stratification in 82Rb PET MPI. Condensed AbstractAI-derived splenic ratio (SR), a marker of pharmacologic stress adequacy, was independently associated with increased cardiovascular risk in a large 82Rb PET cohort, even among patients with preserved myocardial flow reserve (MFR). High SR identified individuals with elevated MACE risk despite normal perfusion and flow findings, suggesting unrecognized physiologic vulnerability. Incorporating automated SR into PET MPI interpretation may enhance risk stratification and identify patients who could benefit from intensified preventive care, particularly when traditional imaging markers appear reassuring. These findings support SR as a clinically meaningful, easily integrated biomarker in stress PET imaging.

Cardiac Measurement Calculation on Point-of-Care Ultrasonography with Artificial Intelligence

Mercaldo, S. F., Bizzo, B. C., Sadore, T., Halle, M. A., MacDonald, A. L., Newbury-Chaet, I., L'Italien, E., Schultz, A. S., Tam, V., Hegde, S. M., Mangion, J. R., Mehrotra, P., Zhao, Q., Wu, J., Hillis, J.

medrxiv logopreprintJun 28 2025
IntroductionPoint-of-care ultrasonography (POCUS) enables clinicians to obtain critical diagnostic information at the bedside especially in resource limited settings. This information may include 2D cardiac quantitative data, although measuring the data manually can be time-consuming and subject to user experience. Artificial intelligence (AI) can potentially automate this quantification. This study assessed the interpretation of key cardiac measurements on POCUS images by an AI-enabled device (AISAP Cardio V1.0). MethodsThis retrospective diagnostic accuracy study included 200 POCUS cases from four hospitals (two in Israel and two in the United States). Each case was independently interpreted by three cardiologists and the device for seven measurements (left ventricular (LV) ejection fraction, inferior vena cava (IVC) maximal diameter, left atrial (LA) area, right atrial (RA) area, LV end diastolic diameter, right ventricular (RV) fractional area change and aortic root diameter). The endpoints were the root mean square error (RMSE) of the device compared to the average cardiologist measurement (LV ejection fraction and IVC maximal diameter were primary endpoints; the other measurements were secondary endpoints). Predefined passing criteria were based on the upper bounds of the RMSE 95% confidence intervals (CIs). The inter-cardiologist RMSE was also calculated for reference. ResultsThe device achieved the passing criteria for six of the seven measurements. While not achieving the passing criterion for RV fractional area change, it still achieved a better RMSE than the inter-cardiologist RMSE. The RMSE was 6.20% (95% CI: 5.57 to 6.83; inter-cardiologist RMSE of 8.23%) for LV ejection fraction, 0.25cm (95% CI: 0.20 to 0.29; 0.36cm) for IVC maximal diameter, 2.39cm2 (95% CI: 1.96 to 2.82; 4.39cm2) for LA area, 2.11cm2 (95% CI: 1.75 to 2.47; 3.49cm2) for RA area, 5.06mm (95% CI: 4.58 to 5.55; 4.67mm) for LV end diastolic diameter, 10.17% (95% CI: 9.01 to 11.33; 14.12%) for RV fractional area change and 0.19cm (95% CI: 0.16 to 0.21; 0.24cm) for aortic root diameter. DiscussionThe device accurately calculated these cardiac measurements especially when benchmarked against inter-cardiologist variability. Its use could assist clinicians who utilize POCUS and better enable their clinical decision-making.
Page 22 of 38375 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.