Sort by:
Page 20 of 54537 results

A Trust-Guided Approach to MR Image Reconstruction with Side Information.

Atalik A, Chopra S, Sodickson DK

pubmed logopapersJul 31 2025
Reducing MRI scan times can improve patient care and lower healthcare costs. Many acceleration methods are designed to reconstruct diagnostic-quality images from sparse k-space data, via an ill-posed or ill-conditioned linear inverse problem (LIP). To address the resulting ambiguities, it is crucial to incorporate prior knowledge into the optimization problem, e.g., in the form of regularization. Another form of prior knowledge less commonly used in medical imaging is the readily available auxiliary data (a.k.a. side information) obtained from sources other than the current acquisition. In this paper, we present the Trust-Guided Variational Network (TGVN), an end-to-end deep learning framework that effectively and reliably integrates side information into LIPs. We demonstrate its effectiveness in multi-coil, multi-contrast MRI reconstruction, where incomplete or low-SNR measurements from one contrast are used as side information to reconstruct high-quality images of another contrast from heavily under-sampled data. TGVN is robust across different contrasts, anatomies, and field strengths. Compared to baselines utilizing side information, TGVN achieves superior image quality while preserving subtle pathological features even at challenging acceleration levels, drastically speeding up acquisition while minimizing hallucinations. Source code and dataset splits are available on github.com/sodicksonlab/TGVN.

A generalizable diffusion framework for 3D low-dose and few-view cardiac SPECT imaging.

Xie H, Gan W, Ji W, Chen X, Alashi A, Thorn SL, Zhou B, Liu Q, Xia M, Guo X, Liu YH, An H, Kamilov US, Wang G, Sinusas AJ, Liu C

pubmed logopapersJul 30 2025
Myocardial perfusion imaging using SPECT is widely utilized to diagnose coronary artery diseases, but image quality can be negatively affected in low-dose and few-view acquisition settings. Although various deep learning methods have been introduced to improve image quality from low-dose or few-view SPECT data, previous approaches often fail to generalize across different acquisition settings, limiting realistic applicability. This work introduced DiffSPECT-3D, a diffusion framework for 3D cardiac SPECT imaging that effectively adapts to different acquisition settings without requiring further network re-training or fine-tuning. Using both image and projection data, a consistency strategy is proposed to ensure that diffusion sampling at each step aligns with the low-dose/few-view projection measurements, the image data, and the scanner geometry, thus enabling generalization to different low-dose/few-view settings. Incorporating anatomical spatial information from CT and total variation constraint, we proposed a 2.5D conditional strategy to allow DiffSPECT-3D to observe 3D contextual information from the entire image volume, addressing the 3D memory/computational issues in diffusion model. We extensively evaluated the proposed method on 1,325 clinical <sup>99m</sup>Tc tetrofosmin stress/rest studies from 795 patients. Each study was reconstructed into 5 different low-count levels and 5 different projection few-view levels for model evaluations, ranging from 1% to 50% and from 1 view to 9 view, respectively. Validated against cardiac catheterization results and diagnostic review from nuclear cardiologists, the presented results show the potential to achieve low-dose and few-view SPECT imaging without compromising clinical performance. Additionally, DiffSPECT-3D could be directly applied to full-dose SPECT images to further improve image quality, especially in a low-dose stress-first cardiac SPECT imaging protocol.

LAMA-Net: A Convergent Network Architecture for Dual-Domain Reconstruction

Chi Ding, Qingchao Zhang, Ge Wang, Xiaojing Ye, Yunmei Chen

arxiv logopreprintJul 30 2025
We propose a learnable variational model that learns the features and leverages complementary information from both image and measurement domains for image reconstruction. In particular, we introduce a learned alternating minimization algorithm (LAMA) from our prior work, which tackles two-block nonconvex and nonsmooth optimization problems by incorporating a residual learning architecture in a proximal alternating framework. In this work, our goal is to provide a complete and rigorous convergence proof of LAMA and show that all accumulation points of a specified subsequence of LAMA must be Clarke stationary points of the problem. LAMA directly yields a highly interpretable neural network architecture called LAMA-Net. Notably, in addition to the results shown in our prior work, we demonstrate that the convergence property of LAMA yields outstanding stability and robustness of LAMA-Net in this work. We also show that the performance of LAMA-Net can be further improved by integrating a properly designed network that generates suitable initials, which we call iLAMA-Net. To evaluate LAMA-Net/iLAMA-Net, we conduct several experiments and compare them with several state-of-the-art methods on popular benchmark datasets for Sparse-View Computed Tomography.

Trabecular bone analysis: ultra-high-resolution CT goes far beyond high-resolution CT and gets closer to micro-CT (a study using Canon Medical CT devices).

Gillet R, Puel U, Amer A, Doyen M, Boubaker F, Assabah B, Hossu G, Gillet P, Blum A, Teixeira PAG

pubmed logopapersJul 30 2025
High-resolution CT (HR-CT) cannot image trabecular bone due to insufficient spatial resolution. Ultra-high-resolution CT may be a valuable alternative. We aimed to describe the accuracy of Canon Medical HR, super-high-resolution (SHR), and ultra-high-resolution (UHR)-CT in measuring trabecular bone microarchitectural parameters using micro-CT as a reference. Sixteen cadaveric distal tibial epiphyses were enrolled in this pre-clinical study. Images were acquired with HR-CT (i.e., 0.5 mm slice thickness/512<sup>2</sup> matrix) and SHR-CT (i.e., 0.25 mm slice thickness and 1024<sup>2</sup> matrix) with and without deep learning reconstruction (DLR) and UHR-CT (i.e., 0.25 mm slice thickness/2048<sup>2</sup> matrix) without DLR. Trabecular bone parameters were compared. Trabecular thickness was closest with UHR-CT but remained 1.37 times that of micro-CT (P < 0.001). With SHR-CT without and with DLR, it was 1.75 and 1.79 times that of micro-CT, respectively (P < 0.001), and 3.58 and 3.68 times that of micro-CT with HR-CT without and with DLR, respectively (P < 0.001). Trabecular separation was 0.7 times that of micro-CT with UHR-CT (P < 0.001), 0.93 and 0.94 times that of micro-CT with SHR-CT without and with DLR (P = 0.36 and 0.79, respectively), and 1.52 and 1.36 times that of micro-CT with HR-CT without and with DLR (P < 0.001). Bone volume/total volume was overestimated (i.e., 1.66 to 1.92 times that of micro-CT) by all techniques (P < 0.001). However, HR-CT values were superior to UHR-CT values (P = 0.03 and 0.01, without and with DLR, respectively). UHR and SHR-CT were the closest techniques to micro-CT and surpassed HR-CT.

Enhancing and Accelerating Brain MRI through Deep Learning Reconstruction Using Prior Subject-Specific Imaging

Amirmohammad Shamaei, Alexander Stebner, Salome, Bosshart, Johanna Ospel, Gouri Ginde, Mariana Bento, Roberto Souza

arxiv logopreprintJul 28 2025
Magnetic resonance imaging (MRI) is a crucial medical imaging modality. However, long acquisition times remain a significant challenge, leading to increased costs, and reduced patient comfort. Recent studies have shown the potential of using deep learning models that incorporate information from prior subject-specific MRI scans to improve reconstruction quality of present scans. Integrating this prior information requires registration of the previous scan to the current image reconstruction, which can be time-consuming. We propose a novel deep-learning-based MRI reconstruction framework which consists of an initial reconstruction network, a deep registration model, and a transformer-based enhancement network. We validated our method on a longitudinal dataset of T1-weighted MRI scans with 2,808 images from 18 subjects at four acceleration factors (R5, R10, R15, R20). Quantitative metrics confirmed our approach's superiority over existing methods (p < 0.05, Wilcoxon signed-rank test). Furthermore, we analyzed the impact of our MRI reconstruction method on the downstream task of brain segmentation and observed improved accuracy and volumetric agreement with reference segmentations. Our approach also achieved a substantial reduction in total reconstruction time compared to methods that use traditional registration algorithms, making it more suitable for real-time clinical applications. The code associated with this work is publicly available at https://github.com/amirshamaei/longitudinal-mri-deep-recon.

Implicit Spatiotemporal Bandwidth Enhancement Filter by Sine-activated Deep Learning Model for Fast 3D Photoacoustic Tomography

I Gede Eka Sulistyawan, Takuro Ishii, Riku Suzuki, Yoshifumi Saijo

arxiv logopreprintJul 28 2025
3D photoacoustic tomography (3D-PAT) using high-frequency hemispherical transducers offers near-omnidirectional reception and enhanced sensitivity to the finer structural details encoded in the high-frequency components of the broadband photoacoustic (PA) signal. However, practical constraints such as limited number of channels with bandlimited sampling rate often result in sparse and bandlimited sensors that degrade image quality. To address this, we revisit the 2D deep learning (DL) approach applied directly to sensor-wise PA radio-frequency (PARF) data. Specifically, we introduce sine activation into the DL model to restore the broadband nature of PARF signals given the observed band-limited and high-frequency PARF data. Given the scarcity of 3D training data, we employ simplified training strategies by simulating random spherical absorbers. This combination of sine-activated model and randomized training is designed to emphasize bandwidth learning over dataset memorization. Our model was evaluated on a leaf skeleton phantom, a micro-CT-verified 3D spiral phantom and in-vivo human palm vasculature. The results showed that the proposed training mechanism on sine-activated model was well-generalized across the different tests by effectively increasing the sensor density and recovering the spatiotemporal bandwidth. Qualitatively, the sine-activated model uniquely enhanced high-frequency content that produces clearer vascular structure with fewer artefacts. Quantitatively, the sine-activated model exhibits full bandwidth at -12 dB spectrum and significantly higher contrast-to-noise ratio with minimal loss of structural similarity index. Lastly, we optimized our approach to enable fast enhanced 3D-PAT at 2 volumes-per-second for better practical imaging of a free-moving targets.

Deep Learning-Based Acceleration in MRI: Current Landscape and Clinical Applications in Neuroradiology.

Rai P, Mark IT, Soni N, Diehn F, Messina SA, Benson JC, Madhavan A, Agarwal A, Bathla G

pubmed logopapersJul 28 2025
Magnetic resonance imaging (MRI) is a cornerstone of neuroimaging, providing unparalleled soft-tissue contrast. However, its clinical utility is often limited by long acquisition times, which contribute to motion artifacts, patient discomfort, and increased costs. Although traditional acceleration techniques, such as parallel imaging and compressed sensing help reduce scan times, they may reduce signal-to-noise ratio (SNR) and introduce artifacts. The advent of deep learning-based image reconstruction (DLBIR) may help in several ways to reduce scan times while preserving or improving image quality. Various DLBIR techniques are currently available through different vendors, with claimed reductions in gradient times up to 85% while maintaining or enhancing lesion conspicuity, improved noise suppression and diagnostic accuracy. The evolution of DLBIR from 2D to 3D acquisitions, coupled with advancements in self-supervised learning, further expands its capabilities and clinical applicability. Despite these advancements, challenges persist in generalizability across scanners and imaging conditions, susceptibility to artifacts and potential alterations in pathology representation. Additionally, limited data on training, underlying algorithms and clinical validation of these vendor-specific closed-source algorithms pose barriers to end-user trust and widespread adoption. This review explores the current applications of DLBIR in neuroimaging, vendor-driven implementations, and emerging trends that may impact accelerated MRI acquisitions.ABBREVIATIONS: PI= parallel imaging; CS= compressed sensing; DLBIR = deep learning-based image reconstruction; AI= artificial intelligence; DR =. Deep resolve; ACS = Artificial-intelligence-assisted compressed sensing.

All-in-One Medical Image Restoration with Latent Diffusion-Enhanced Vector-Quantized Codebook Prior

Haowei Chen, Zhiwen Yang, Haotian Hou, Hui Zhang, Bingzheng Wei, Gang Zhou, Yan Xu

arxiv logopreprintJul 26 2025
All-in-one medical image restoration (MedIR) aims to address multiple MedIR tasks using a unified model, concurrently recovering various high-quality (HQ) medical images (e.g., MRI, CT, and PET) from low-quality (LQ) counterparts. However, all-in-one MedIR presents significant challenges due to the heterogeneity across different tasks. Each task involves distinct degradations, leading to diverse information losses in LQ images. Existing methods struggle to handle these diverse information losses associated with different tasks. To address these challenges, we propose a latent diffusion-enhanced vector-quantized codebook prior and develop \textbf{DiffCode}, a novel framework leveraging this prior for all-in-one MedIR. Specifically, to compensate for diverse information losses associated with different tasks, DiffCode constructs a task-adaptive codebook bank to integrate task-specific HQ prior features across tasks, capturing a comprehensive prior. Furthermore, to enhance prior retrieval from the codebook bank, DiffCode introduces a latent diffusion strategy that utilizes the diffusion model's powerful mapping capabilities to iteratively refine the latent feature distribution, estimating more accurate HQ prior features during restoration. With the help of the task-adaptive codebook bank and latent diffusion strategy, DiffCode achieves superior performance in both quantitative metrics and visual quality across three MedIR tasks: MRI super-resolution, CT denoising, and PET synthesis.

Accelerating cardiac radial-MRI: Fully polar based technique using compressed sensing and deep learning.

Ghodrati V, Duan J, Ali F, Bedayat A, Prosper A, Bydder M

pubmed logopapersJul 26 2025
Fast radial-MRI approaches based on compressed sensing (CS) and deep learning (DL) often use non-uniform fast Fourier transform (NUFFT) as the forward imaging operator, which might introduce interpolation errors and reduce image quality. Using the polar Fourier transform (PFT), we developed fully polar CS and DL algorithms for fast 2D cardiac radial-MRI. Our methods directly reconstruct images in polar spatial space from polar k-space data, eliminating frequency interpolation and ensuring an easy-to-compute data consistency term for the DL framework via the variable splitting (VS) scheme. Furthermore, PFT reconstruction produces initial images with fewer artifacts in a reduced field of view, making it a better starting point for CS and DL algorithms, especially for dynamic imaging, where information from a small region of interest is critical, as opposed to NUFFT, which often results in global streaking artifacts. In the cardiac region, PFT-based CS technique outperformed NUFFT-based CS at acceleration rates of 5x (mean SSIM: 0.8831 vs. 0.8526), 10x (0.8195 vs. 0.7981), and 15x (0.7720 vs. 0.7503). Our PFT(VS)-DL technique outperformed the NUFFT(GD)-based DL method, which used unrolled gradient descent with the NUFFT as the forward imaging operator, with mean SSIM scores of 0.8914 versus 0.8617 at 10x and 0.8470 versus 0.8301 at 15x. Radiological assessments revealed that PFT(VS)-based DL scored 2.9±0.30 and 2.73±0.45 at 5x and 10x, whereas NUFFT(GD)-based DL scored 2.7±0.47 and 2.40±0.50, respectively. Our methods suggest a promising alternative to NUFFT-based fast radial-MRI for dynamic imaging, prioritizing reconstruction quality in a small region of interest over whole image quality.

Artificial intelligence-assisted compressed sensing CINE enhances the workflow of cardiac magnetic resonance in challenging patients.

Wang H, Schmieder A, Watkins M, Wang P, Mitchell J, Qamer SZ, Lanza G

pubmed logopapersJul 26 2025
A key cardiac magnetic resonance (CMR) challenge is breath-holding duration, difficult for cardiac patients. To evaluate whether artificial intelligence-assisted compressed sensing CINE (AI-CS-CINE) reduces image acquisition time of CMR compared to conventional CINE (C-CINE). Cardio-oncology patients (<i>n</i> = 60) and healthy volunteers (<i>n</i> = 29) underwent sequential C-CINE and AI-CS-CINE with a 1.5-T scanner. Acquisition time, visual image quality assessment, and biventricular metrics (end-diastolic volume, end-systolic volume, stroke volume, ejection fraction, left ventricular mass, and wall thickness) were analyzed and compared between C-CINE and AI-CS-CINE with Bland-Altman analysis, and calculation of intraclass coefficient (ICC). In 89 participants (58.5 ± 16.8 years, 42 males, 47 females), total AI-CS-CINE acquisition and reconstruction time (37 seconds) was 84% faster than C-CINE (238 seconds). C-CINE required repeats in 23% (20/89) of cases (approximately 8 minutes lost), while AI-CS-CINE only needed one repeat (1%; 2 seconds lost). AI-CS-CINE had slightly lower contrast but preserved structural clarity. Bland-Altman plots and ICC (0.73 ≤ <i>r</i> ≤ 0.98) showed strong agreement for left ventricle (LV) and right ventricle (RV) metrics, including those in the cardiac amyloidosis subgroup (<i>n</i> = 31). AI-CS-CINE enabled faster, easier imaging in patients with claustrophobia, dyspnea, arrhythmias, or restlessness. Motion-artifacted C-CINE images were reliably interpreted from AI-CS-CINE. AI-CS-CINE accelerated CMR image acquisition and reconstruction, preserved anatomical detail, and diminished impact of patient-related motion. Quantitative AI-CS-CINE metrics agreed closely with C-CINE in cardio-oncology patients, including the cardiac amyloidosis cohort, as well as healthy volunteers regardless of left and right ventricular size and function. AI-CS-CINE significantly enhanced CMR workflow, particularly in challenging cases. The strong analytical concordance underscores reliability and robustness of AI-CS-CINE as a valuable tool.
Page 20 of 54537 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.