Sort by:
Page 2 of 99981 results

An optimized multi-task contrastive learning framework for HIFU lesion detection and segmentation.

Zavar M, Ghaffari HR, Tabatabaee H

pubmed logopapersAug 13 2025
Accurate detection and segmentation of lesions induced by High-Intensity Focused Ultrasound (HIFU) in medical imaging remain significant challenges in automated disease diagnosis. Traditional methods heavily rely on labeled data, which is often scarce, expensive, and time-consuming to obtain. Moreover, existing approaches frequently struggle with variations in medical data and the limited availability of annotated datasets, leading to suboptimal performance. To address these challenges, this paper introduces an innovative framework called the Optimized Multi-Task Contrastive Learning Framework (OMCLF), which leverages self-supervised learning (SSL) and genetic algorithms (GA) to enhance HIFU lesion detection and segmentation. OMCLF integrates classification and segmentation into a unified model, utilizing a shared backbone to extract common features. The framework systematically optimizes feature representations, hyperparameters, and data augmentation strategies tailored for medical imaging, ensuring that critical information, such as lesion details, is preserved. By employing a genetic algorithm, OMCLF explores and optimizes augmentation techniques suitable for medical data, avoiding distortions that could compromise diagnostic accuracy. Experimental results demonstrate that OMCLF outperforms single-task methods in both classification and segmentation tasks while significantly reducing dependency on labeled data. Specifically, OMCLF achieves an accuracy of 93.3% in lesion detection and a Dice score of 92.5% in segmentation, surpassing state-of-the-art methods such as SimCLR and MoCo. The proposed approach achieves superior accuracy in identifying and delineating HIFU-induced lesions, marking a substantial advancement in medical image interpretation and automated diagnosis. OMCLF represents a significant step forward in the evolutionary optimization of self-supervised learning, with potential applications across various medical imaging domains.

KonfAI: A Modular and Fully Configurable Framework for Deep Learning in Medical Imaging

Valentin Boussot, Jean-Louis Dillenseger

arxiv logopreprintAug 13 2025
KonfAI is a modular, extensible, and fully configurable deep learning framework specifically designed for medical imaging tasks. It enables users to define complete training, inference, and evaluation workflows through structured YAML configuration files, without modifying the underlying code. This declarative approach enhances reproducibility, transparency, and experimental traceability while reducing development time. Beyond the capabilities of standard pipelines, KonfAI provides native abstractions for advanced strategies including patch-based learning, test-time augmentation, model ensembling, and direct access to intermediate feature representations for deep supervision. It also supports complex multi-model training setups such as generative adversarial architectures. Thanks to its modular and extensible architecture, KonfAI can easily accommodate custom models, loss functions, and data processing components. The framework has been successfully applied to segmentation, registration, and image synthesis tasks, and has contributed to top-ranking results in several international medical imaging challenges. KonfAI is open source and available at \href{https://github.com/vboussot/KonfAI}{https://github.com/vboussot/KonfAI}.

Pathology-Guided AI System for Accurate Segmentation and Diagnosis of Cervical Spondylosis.

Zhang Q, Chen X, He Z, Wu L, Wang K, Sun J, Shen H

pubmed logopapersAug 13 2025
Cervical spondylosis, a complex and prevalent condition, demands precise and efficient diagnostic techniques for accurate assessment. While MRI offers detailed visualization of cervical spine anatomy, manual interpretation remains labor-intensive and prone to error. To address this, we developed an innovative AI-assisted Expert-based Diagnosis System that automates both segmentation and diagnosis of cervical spondylosis using MRI. Leveraging multi-center datasets of cervical MRI images from patients with cervical spondylosis, our system features a pathology-guided segmentation model capable of accurately segmenting key cervical anatomical structures. The segmentation is followed by an expert-based diagnostic framework that automates the calculation of critical clinical indicators. Our segmentation model achieved an impressive average Dice coefficient exceeding 0.90 across four cervical spinal anatomies and demonstrated enhanced accuracy in herniation areas. Diagnostic evaluation further showcased the system's precision, with the lowest mean average errors (MAE) for the C2-C7 Cobb angle and the Maximum Spinal Cord Compression (MSCC) coefficient. In addition, our method delivered high accuracy, precision, recall, and F1 scores in herniation localization, K-line status assessment, T2 hyperintensity detection, and Kang grading. Comparative analysis and external validation demonstrate that our system outperforms existing methods, establishing a new benchmark for segmentation and diagnostic tasks for cervical spondylosis.

In vivo variability of MRI radiomics features in prostate lesions assessed by a test-retest study with repositioning.

Zhang KS, Neelsen CJO, Wennmann M, Hielscher T, Kovacs B, Glemser PA, Görtz M, Stenzinger A, Maier-Hein KH, Huber J, Schlemmer HP, Bonekamp D

pubmed logopapersAug 13 2025
Despite academic success, radiomics-based machine learning algorithms have not reached clinical practice, partially due to limited repeatability/reproducibility. To address this issue, this work aims to identify a stable subset of radiomics features in prostate MRI for radiomics modelling. A prospective study was conducted in 43 patients who received a clinical MRI examination and a research exam with repetition of T2-weighted and two different diffusion-weighted imaging (DWI) sequences with repositioning in between. Radiomics feature (RF) extraction was performed from MRI segmentations accounting for intra-rater and inter-rater effects, and three different image normalization methods were compared. Stability of RFs was assessed using the concordance correlation coefficient (CCC) for different comparisons: rater effects, inter-scan (before and after repositioning) and inter-sequence (between the two diffusion-weighted sequences) variability. In total, only 64 out of 321 (~ 20%) extracted features demonstrated stability, defined as CCC ≥ 0.75 in all settings (5 high-b value, 7 ADC- and 52 T2-derived features). For DWI, primarily intensity-based features proved stable with no shape feature passing the CCC threshold. T2-weighted images possessed the largest number of stable features with multiple shape (7), intensity-based (7) and texture features (28). Z-score normalization for high-b value images and muscle-normalization for T2-weighted images were identified as suitable.

BSA-Net: Boundary-prioritized spatial adaptive network for efficient left atrial segmentation.

Xu F, Tu W, Feng F, Yang J, Gunawardhana M, Gu Y, Huang J, Zhao J

pubmed logopapersAug 13 2025
Atrial fibrillation, a common cardiac arrhythmia with rapid and irregular atrial electrical activity, requires accurate left atrial segmentation for effective treatment planning. Recently, deep learning methods have gained encouraging success in left atrial segmentation. However, current methodologies critically depend on the assumption of consistently complete centered left atrium as input, which neglects the structural incompleteness and boundary discontinuities arising from random-crop operations during inference. In this paper, we propose BSA-Net, which exploits an adaptive adjustment strategy in both feature position and loss optimization to establish long-range feature relationships and strengthen robust intermediate feature representations in boundary regions. Specifically, we propose a Spatial-adaptive Convolution (SConv) that employs a shuffle operation combined with lightweight convolution to directly establish cross-positional relationships within regions of potential relevance. Moreover, we develop the dual Boundary Prioritized loss, which enhances boundary precision by differentially weighting foreground and background boundaries, thus optimizing complex boundary regions. With the above technologies, the proposed method enjoys a better speed-accuracy trade-off compared to current methods. BSA-Net attains Dice scores of 92.55%, 91.42%, and 84.67% on the LA, Utah, and Waikato datasets, respectively, with a mere 2.16 M parameters-approximately 80% fewer than other contemporary state-of-the-art models. Extensive experimental results on three benchmark datasets have demonstrated that BSA-Net, consistently and significantly outperforms existing state-of-the-art methods.

Quest for a clinically relevant medical image segmentation metric: the definition and implementation of Medical Similarity Index

Szuzina Fazekas, Bettina Katalin Budai, Viktor Bérczi, Pál Maurovich-Horvat, Zsolt Vizi

arxiv logopreprintAug 13 2025
Background: In the field of radiology and radiotherapy, accurate delineation of tissues and organs plays a crucial role in both diagnostics and therapeutics. While the gold standard remains expert-driven manual segmentation, many automatic segmentation methods are emerging. The evaluation of these methods primarily relies on traditional metrics that only incorporate geometrical properties and fail to adapt to various applications. Aims: This study aims to develop and implement a clinically relevant segmentation metric that can be adapted for use in various medical imaging applications. Methods: Bidirectional local distance was defined, and the points of the test contour were paired with points of the reference contour. After correcting for the distance between the test and reference center of mass, Euclidean distance was calculated between the paired points, and a score was given to each test point. The overall medical similarity index was calculated as the average score across all the test points. For demonstration, we used myoma and prostate datasets; nnUNet neural networks were trained for segmentation. Results: An easy-to-use, sustainable image processing pipeline was created using Python. The code is available in a public GitHub repository along with Google Colaboratory notebooks. The algorithm can handle multislice images with multiple masks per slice. Mask splitting algorithm is also provided that can separate the concave masks. We demonstrate the adaptability with prostate segmentation evaluation. Conclusions: A novel segmentation evaluation metric was implemented, and an open-access image processing pipeline was also provided, which can be easily used for automatic measurement of clinical relevance of medical image segmentation.}

SKOOTS: Skeleton oriented object segmentation for mitochondria

Buswinka, C. J., Osgood, R. T., Nitta, H., Indzhykulian, A. A.

biorxiv logopreprintAug 13 2025
Segmenting individual instances of mitochondria from imaging datasets can provide rich quantitative information, but is prohibitively time-consuming when done manually, prompting interest in the development of automated algorithms using deep neural networks. Existing solutions for various segmentation tasks are optimized for either: high-resolution three-dimensional imaging, relying on well-defined object boundaries (e.g., whole neuron segmentation in volumetric electron microscopy datasets); or low-resolution two-dimensional imaging, boundary-invariant but poorly suited to large 3D objects (e.g., whole-cell segmentation of light microscopy images). Mitochondria in whole-cell 3D electron microscopy datasets often lie in the middle ground - large, yet with ambiguous borders, challenging current segmentation tools. To address this, we developed skeleton-oriented object segmentation (SKOOTS) - a novel approach that efficiently segments large, densely packed mitochondria. SKOOTS accurately and efficiently segments mitochondria in previously difficult contexts and can also be applied to segment other objects in 3D light microscopy datasets. This approach bridges a critical gap between existing segmentation approaches, improving the utility of automated analysis of three-dimensional biomedical imaging data. We demonstrate the utility of SKOOTS by applying it to segment over 15,000 cochlear hair cell mitochondria across experimental conditions in under 2 hours on a consumer-grade PC, enabling downstream morphological analysis that revealed subtle structural changes following aminoglycoside exposure - differences not detectable using analysis approaches currently used in the field.

Genetic architecture of bone marrow fat fraction implies its involvement in osteoporosis risk.

Wu Z, Yang Y, Ning C, Li J, Cai Y, Li Y, Cao Z, Tian S, Peng J, Ma Q, He C, Xia S, Chen J, Miao X, Li Z, Zhu Y, Chu Q, Tian J

pubmed logopapersAug 12 2025
Bone marrow adipose tissue, as a distinct adipose subtype, has been implicated in the pathophysiology of skeletal, metabolic, and hematopoietic disorders. To identify its underlying genetic factors, we utilized a deep learning algorithm capable of quantifying bone marrow fat fraction (BMFF) in the vertebrae and proximal femur using magnetic resonance imaging data of over 38,000 UK Biobank participants. Genome-wide association analyses uncovered 373 significant BMFF-associated variants (P-value < 5 × 10<sup>-9</sup>), with enrichment in bone remodeling, metabolism, and hematopoiesis pathway. Furthermore, genetic correlation highlighted a significant association between BMFF and skeletal disease. In about 300,000 individuals, polygenic risk scores derived from three proximal femur BMFF were significantly associated with increased osteoporosis risk. Notably, Mendelian randomization analyses revealed a causal link between proximal femur BMFF and osteoporosis. Here, we show critical insights into the genetic determinants of BMFF and offer perspectives on the biological mechanisms driving osteoporosis development.

Fully Automatic Volume Segmentation Using Deep Learning Approaches to Assess the Thoracic Aorta, Visceral Abdominal Aorta, and Visceral Vasculature.

Pouncey AL, Charles E, Bicknell C, Bérard X, Ducasse E, Caradu C

pubmed logopapersAug 12 2025
Computed tomography angiography (CTA) imaging is essential to evaluate and analyse complex abdominal and thoraco-abdominal aortic aneurysms. However, CTA analyses are labour intensive, time consuming, and prone to interphysician variability. Fully automatic volume segmentation (FAVS) using artificial intelligence with deep learning has been validated for infrarenal aorta imaging but requires further testing for thoracic and visceral aorta segmentation. This study assessed FAVS accuracy against physician controlled manual segmentation (PCMS) in the descending thoracic aorta, visceral abdominal aorta, and visceral vasculature. This was a retrospective, multicentre, observational cohort study. Fifty pre-operative CTAs of patients with abdominal aortic aneurysm were randomly selected. Comparisons between FAVS and PCMS and assessment of inter- and intra-observer reliability of PCMS were performed. Volumetric segmentation performance was evaluated using sensitivity, specificity, Dice similarity coefficient (DSC), and Jaccard index (JI). Visceral vessel identification was compared by analysing branchpoint coordinates. Bland-Altman limits of agreement (BA-LoA) were calculated for proximal visceral diameters (excluding duplicate renals). FAVS demonstrated performance comparable with PCMS for volumetric segmentation, with a median DSC of 0.93 (interquartile range [IQR] 0.03), JI of 0.87 (IQR 0.05), sensitivity of 0.99 (IQR 0.01), and specificity of 1.00 (IQR 0.00). These metrics are similar to interphysician comparisons: median DSC 0.93 (IQR 0.07), JI 0.87 (IQR 0.12), sensitivity 0.90 (IQR 0.08), and specificity 1.00 (IQR 0.00). FAVS correctly identified 99.5% (183/184) of visceral vessels. Branchpoint coordinates for FAVS and PCMS were within the limits of CTA spatial resolution (Δx -0.33 [IQR 2.82], Δy 0.61 [IQR 4.85], Δz 2.10 [IQR 4.69] mm). BA-LoA for proximal visceral diameter measurements showed reasonable agreement: FAVS vs. PCMS mean difference -0.11 ± 5.23 mm compared with interphysician variability of 0.03 ± 5.27 mm. FAVS provides accurate, efficient segmentation of the thoracic and visceral aorta, delivering performance comparable with manual segmentation by expert physicians. This technology may enhance clinical workflows for monitoring and planning treatments for complex abdominal and thoraco-abdominal aortic aneurysms.

MRI-derived quantification of hepatic vessel-to-volume ratios in chronic liver disease using a deep learning approach.

Herold A, Sobotka D, Beer L, Bastati N, Poetter-Lang S, Weber M, Reiberger T, Mandorfer M, Semmler G, Simbrunner B, Wichtmann BD, Ba-Ssalamah SA, Trauner M, Ba-Ssalamah A, Langs G

pubmed logopapersAug 12 2025
We aimed to quantify hepatic vessel volumes across chronic liver disease stages and healthy controls using deep learning-based magnetic resonance imaging (MRI) analysis, and assess correlations with biomarkers for liver (dys)function and fibrosis/portal hypertension. We assessed retrospectively healthy controls, non-advanced and advanced chronic liver disease (ACLD) patients using a 3D U-Net model for hepatic vessel segmentation on portal venous phase gadoxetic acid-enhanced 3-T MRI. Total (TVVR), hepatic (HVVR), and intrahepatic portal vein-to-volume ratios (PVVR) were compared between groups and correlated with: albumin-bilirubin (ALBI) and "model for end-stage liver disease-sodium" (MELD-Na) score) and fibrosis/portal hypertension (Fibrosis-4 (FIB-4) Score, liver stiffness measurement (LSM), hepatic venous pressure gradient (HVPG), platelet count (PLT), and spleen volume. We included 197 subjects, aged 54.9 ± 13.8 years (mean ± standard deviation), 111 males (56.3%): 35 healthy controls, 44 non-ACLD, and 118 ACLD patients. TVVR and HVVR were highest in controls (3.9; 2.1), intermediate in non-ACLD (2.8; 1.7), and lowest in ACLD patients (2.3; 1.0) (p ≤ 0.001). PVVR was reduced in both non-ACLD and ACLD patients (both 1.2) compared to controls (1.7) (p ≤ 0.001), but showed no difference between CLD groups (p = 0.999). HVVR significantly correlated indirectly with FIB-4, ALBI, MELD-Na, LSM, and spleen volume (ρ ranging from -0.27 to -0.40), and directly with PLT (ρ = 0.36). TVVR and PVVR showed similar but weaker correlations. Deep learning-based hepatic vessel volumetry demonstrated differences between healthy liver and chronic liver disease stages and shows correlations with established markers of disease severity. Hepatic vessel volumetry demonstrates differences between healthy liver and chronic liver disease stages, potentially serving as a non-invasive imaging biomarker. Deep learning-based vessel analysis can provide automated quantification of hepatic vascular changes across healthy liver and chronic liver disease stages. Automated quantification of hepatic vasculature shows significantly reduced hepatic vascular volume in advanced chronic liver disease compared to non-advanced disease and healthy liver. Decreased hepatic vascular volume, particularly in the hepatic venous system, correlates with markers of liver dysfunction, fibrosis, and portal hypertension.
Page 2 of 99981 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.