Sort by:
Page 2 of 32311 results

[Advances in the application of multimodal image fusion technique in stomatology].

Ma TY, Zhu N, Zhang Y

pubmed logopapersSep 26 2025
Within the treatment process of modern stomatology, obtaining exquisite preoperative information is the key to accurate intraoperative planning with implementation and prognostic judgment. However, traditional single mode image has obvious shortcomings, such as "monotonous contents" and "unstable measurement accuracy", which could hardly meet the diversified needs of oral patients. Multimodal medical image fusion (MMIF) technique has been introduced into the studies of stomatology in the 1990s, aiming at realizing personalized patients' data analysis through multiple fusion algorithms, which combines the advantages of multimodal medical images while laying a stable foundation for new treatment technologies. Recently artificial intelligence (AI) has significantly increased the precision and efficiency of MMIF's registration: advanced algorithms and networks have confirmed the great compatibility between AI and MMIF. This article systematically reviews the development history of the multimodal image fusion technique and its current application in stomatology, while analyzing technological progresses within the domain combined with the background of AI's rapid development, in order to provide new ideas for achieving new advancements within the field of stomatology.

Diagnosis of Graves' orbitopathy: imaging methods, challenges, and new perspectives.

Sulima I, Mitera B, Szumowski P, Myśliwiec JK

pubmed logopapersSep 25 2025
Precise assessment of Graves` orbitopathy (GO) predicts therapeutic strategies. Various imaging techniques and different measurement methods are used, but there is a lack of standardization. Traditionally, the Clinical Activity Score (CAS) has been used for assessing GO, especially for evaluating disease activity to predict response to glucocorticoid (GC) therapy, but technological developments have led to a shift towards more objective imaging methods that offer accuracy. Imaging methods for Graves' orbitopathy assessment include ultrasonography (USG), computed tomography (CT), magnetic resonance imaging (MRI), and single photon emission computed tomography (SPECT). These can be divided into those that assess disease activity (MRI, SPECT) and those that assess disease severity (USG, CT, MRI, SPECT). USG is the accessible first-aid tool that provides non-invasive imaging of orbital structures, with a short time of examination making it highly suitable for initial evaluation and monitoring of GO. It does have limitations, particularly in visualizing the apex of the orbit. Initially, orbital CT was thought to provide more accurate morphological information, particularly in extraocular muscles, and superior visualization of bone structures compared to MRI, making it the imaging modality of choice prior to planned orbital decompression; however, it has difficulty in accurately assessing the inflammatory activity stages of GO. Although CT offers a better view of deeper-lying tissue, it is limited by radiation exposure. MRI is best suited for follow-up examinations because it offers superior soft tissue visualization and precise tissue differentiation. However, it is not specific for orbital changes, the examination is very expensive, and it is rarely available. Recent literature proposes that nuclear medicine imaging techniques may be the best discipline for assessing GO. SPECT fused with low-dose CT scans is now used to increase the diagnostic value of the investigation. It provides functional information on top of the anatomical images. The use of cost-effective radioisotope - technetium-99m (99mTc)-DTPA - gives great diagnostic results with short examination time, low radiation exposure, and satisfactory spatial resolution. Nowadays, 36 years after CAS development and with technological improvement, researchers aim to integrate artificial intelligence tools with SPECT/CT imaging to diagnose and stage GO activity more effectively.

Deep learning-based artefact reduction in low-dose dental cone beam computed tomography with high-attenuation materials.

Park HS, Jeon K, Seo JK

pubmed logopapersSep 25 2025
This paper examines the current challenges in computed tomography (CT), with a critical exploration of existing methodologies from a mathematical perspective. Specifically, it aims to identify research directions to enhance image quality in low-dose, cost-effective cone beam CT (CBCT) systems, which have recently gained widespread use in general dental clinics. Dental CBCT offers a substantial cost advantage over standard medical CT, making it affordable for local dental practices; however, this affordability brings significant challenges related to image quality degradation, further complicated by the presence of metallic implants, which are particularly common in older patients. This paper investigates metal-induced artefacts stemming from mismatches in the forward model used in conventional reconstruction methods and explains an alternative approach that bypasses the traditional Radon transform model. Additionally, it examines both the potential and limitations of deep learning-based methods in tackling these challenges, offering insights into their effectiveness in improving image quality in low-dose dental CBCT.This article is part of the theme issue 'Frontiers of applied inverse problems in science and engineering'.

Single-centre, prospective cohort to predict optimal individualised treatment response in multiple sclerosis (POINT-MS): a cohort profile.

Christensen R, Cruciani A, Al-Araji S, Bianchi A, Chard D, Fourali S, Hamed W, Hammam A, He A, Kanber B, Maccarrone D, Moccia M, Mohamud S, Nistri R, Passalis A, Pozzilli V, Prados Carrasco F, Samdanidou E, Song J, Wingrove J, Yam C, Yiannakas M, Thompson AJ, Toosy A, Hacohen Y, Barkhof F, Ciccarelli O

pubmed logopapersSep 25 2025
Multiple sclerosis (MS) is a chronic neurological condition that affects approximately 150 000 people in the UK and presents a significant healthcare burden, including the high costs of disease-modifying treatments (DMTs). DMTs have substantially reduced the risk of relapse and moderately reduced disability progression. Patients exhibit a wide range of responses to available DMTs. The Predicting Optimal INdividualised Treatment response in MS (POINT-MS) cohort was established to predict the individual treatment response by integrating comprehensive clinical phenotyping with imaging, serum and genetic biomarkers of disease activity and progression. Here, we present the baseline characteristics of the cohort and provide an overview of the study design, laying the groundwork for future analyses. POINT-MS is a prospective, observational research cohort and biobank of 781 adult participants with a diagnosis of MS who consented to study enrolment on initiation of a DMT at the Queen Square MS Centre (National Hospital of Neurology and Neurosurgery, University College London Hospital NHS Trust, London) between 01/07/2019 and 31/07/2024. All patients were invited for clinical assessments, including the expanded disability status scale (EDSS) score, brief international cognitive assessment for MS and various patient-reported outcome measures (PROMs). They additionally underwent MRI at 3T, optical coherence tomography and blood tests (for genotyping and serum biomarkers quantification), at baseline (i.e., within 3 months from commencing a DMT), and between 6-12 (re-baseline), 18-24, 30-36, 42-48 and 54-60 months after DMT initiation. 748 participants provided baseline data. They were mostly female (68%) and White (75%) participants, with relapsing-remitting MS (94.3%), and with an average age of 40.8 (±10.9) years and a mean disease duration of 7.9 (±7.4) years since symptom onset. Despite low disability (median EDSS 2.0), cognitive impairment was observed in 40% of participants. Most patients (98.4%) had at least one comorbidity. At study entry, 59.2% were treatment naïve, and 83.2% initiated a high-efficacy DMT. Most patients (76.4%) were in either full- or part-time employment. PROMs indicated heterogeneous impairments in physical and mental health, with a greater psychological than physical impact and with low levels of fatigue. When baseline MRI scans were compared with previous scans (available in 668 (89%) patients; mean time since last scan 9±8 months), 26% and 8.5% of patients had at least one new brain or spinal cord lesion at study entry, respectively. Patients showed a median volume of brain lesions of 6.14 cm<sup>3</sup>, with significant variability among patients (CI 1.1 to 34.1). When brain tissue volumes z-scores were obtained using healthy subjects (N=113, (mean age 42.3 (± 11.8) years, 61.9% female)) from a local MRI database, patients showed a slight reduction in the volumes of the whole grey matter (-0.16 (-0.22 to -0.09)), driven by the deep grey matter (-0.47 (-0.55 to -0.40)), and of the whole white matter (-0.18 (-0.28 to -0.09)), but normal cortical grey matter volumes (0.10 (0.05 to 0.15)). The mean upper cervical spinal cord cross-sectional area (CSA), as measured from volumetric brain scans, was 62.3 (SD 7.5) mm<sup>2</sup>. When CSA z-scores were obtained from the same healthy subjects used for brain measures, patients showed a slight reduction in CSA (-0.15 (-0.24 to -0.10)). Modelling with both standard statistics and machine learning approaches is currently planned to predict individualised treatment response by integrating all the demographic, socioeconomic, clinical data with imaging, genetic and serum biomarkers. The long-term output of this research is a stratification tool that will guide the selection of DMTs in clinical practice on the basis of the individual prognostic profile. We will complete long-term follow-up data in 4 years (January 2029). The biobank and MRI repository will be used for collaborative research on the mechanisms of disability in MS.

Machine and Deep Learning applied to Medical Microwave Imaging: a Scoping Review from Reconstruction to Classification.

Silva T, Conceicao RC, Godinho DM

pubmed logopapersSep 25 2025
Microwave Imaging (MWI) is a promising modality due to its noninvasive nature and lower cost compared to other medical imaging techniques. These characteristics make it a potential alternative to traditional imaging techniques. It has various medical applications, particularly exploited in breast and brain imaging. Machine Learning (ML) has also been increasingly used for medical applications. This paper provides a scoping review of the role of ML in MWI, focusing on two key areas: image reconstruction and classification. The reconstruction section discusses various ML algorithms used to enhance image quality and computational efficiency, highlighting methods such as Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs). The classification section delves into the application of ML for distinguishing between different tissue types, including applications in breast cancer detection and neurological disorder classification. By analyzing the latest studies and methodologies, this review aims review to the current state of ML-enhanced MWI and sheds light on its potential for clinical applications.

Radiomics-based artificial intelligence (AI) models in colorectal cancer (CRC) diagnosis, metastasis detection, prognosis, and treatment response prediction.

Elahi R, Karami P, Amjadzadeh M, Nazari M

pubmed logopapersSep 24 2025
Colorectal cancer (CRC) is the third most common cause of cancer-related morbidity and mortality in the world. Radiomics and radiogenomics are utilized for the high-throughput quantification of features from medical images, providing non-invasive means to characterize cancer heterogeneity and gain insight into the underlying biology. Such radiomics-based artificial intelligence (AI)-methods have demonstrated great potential to improve the accuracy of CRC diagnosis and staging, to distinguish between benign and malignant lesions, to aid in the detection of lymph node and hepatic metastasis, and to predict the effects of therapy and prognosis for patients. This review presents the latest evidence on the clinical applications of radiomics models based on different imaging modalities in CRC. We also discuss the challenges facing clinical translation, including differences in image acquisition, issues related to reproducibility, a lack of standardization, and limited external validation. Given the progress of machine learning (ML) and deep learning (DL) algorithms, radiomics is expected to have an important effect on the personalized treatment of CRC and contribute to a more accurate and individualized clinical decision-making in the future.

Incidental Cardiovascular Findings in Lung Cancer Screening and Noncontrast Chest Computed Tomography.

Cham MD, Shemesh J

pubmed logopapersSep 24 2025
While the primary goal of lung cancer screening CT is to detect early-stage lung cancer in high-risk populations, it often reveals asymptomatic cardiovascular abnormalities that can be clinically significant. These findings include coronary artery calcifications (CACs), myocardial pathologies, cardiac chamber enlargement, valvular lesions, and vascular disease. CAC, a marker of subclinical atherosclerosis, is particularly emphasized due to its strong predictive value for cardiovascular events and mortality. Guidelines recommend qualitative or quantitative CAC scoring on all noncontrast chest CTs. Other actionable findings include aortic aneurysms, pericardial disease, and myocardial pathology, some of which may indicate past or impending cardiac events. This article explores the wide range of incidental cardiovascular findings detectable during low-dose CT (LDCT) scans for lung cancer screening, as well as noncontrast chest CT scans. Distinguishing which findings warrant further evaluation is essential to avoid overdiagnosis, unnecessary anxiety, and resource misuse. The article advocates for a structured approach to follow-up based on the clinical significance of each finding and the patient's overall risk profile. It also notes the rising role of artificial intelligence in automatically detecting and quantifying these abnormalities, potentiating early behavioral modification or medical and surgical interventions. Ultimately, this piece highlights the opportunity to reframe LDCT as a comprehensive cardiothoracic screening tool.

Role of artificial intelligence in screening and medical imaging of precancerous gastric diseases.

Kotelevets SM

pubmed logopapersSep 24 2025
Serological screening, endoscopic imaging, morphological visual verification of precancerous gastric diseases and changes in the gastric mucosa are the main stages of early detection, accurate diagnosis and preventive treatment of gastric precancer. Laboratory - serological, endoscopic and histological diagnostics are carried out by medical laboratory technicians, endoscopists, and histologists. Human factors have a very large share of subjectivity. Endoscopists and histologists are guided by the descriptive principle when formulating imaging conclusions. Diagnostic reports from doctors often result in contradictory and mutually exclusive conclusions. Erroneous results of diagnosticians and clinicians have fatal consequences, such as late diagnosis of gastric cancer and high mortality of patients. Effective population serological screening is only possible with the use of machine processing of laboratory test results. Currently, it is possible to replace subjective imprecise description of endoscopic and histological images by a diagnostician with objective, highly sensitive and highly specific visual recognition using convolutional neural networks with deep machine learning. There are many machine learning models to use. All machine learning models have predictive capabilities. Based on predictive models, it is necessary to identify the risk levels of gastric cancer in patients with a very high probability.

Imaging in chronic thromboembolic pulmonary hypertension: review of the current literature.

Hekimoglu K, Gopalan D, Onur MR, Kahraman G, Akay T

pubmed logopapersSep 23 2025
Chronic thromboembolic pulmonary hypertension (CTEPH) is a severe, life-threatening complication of pulmonary embolism with pulmonary hypertension (PH). The combination of insufficient resolution of thrombi following pulmonary emboli and accompanying microvascular disease results in PH. Advances in imaging can offer better insight into CTEPH diagnosis and management, but lack of disease awareness among radiologists has been shown to be a cause of CTEPH misdiagnosis or delayed diagnosis. This review highlights features pertinent to CTEPH diagnosis. The primary focus is on different modalities with their distinctive signs and newly developed technologies employing artificial intelligence systems.

A systematic review of early neuroimaging and neurophysiological biomarkers for post-stroke mobility prognostication

Levy, C., Dalton, E. J., Ferris, J. K., Campbell, B. C. V., Brodtmann, A., Brauer, S., Churilov, L., Hayward, K. S.

medrxiv logopreprintSep 23 2025
BackgroundAccurate prognostication of mobility outcomes is essential to guide rehabilitation and manage patient expectations. The prognostic utility of neuroimaging and neurophysiological biomarkers remains uncertain when measured early post-stroke. This systematic review aimed to examine the prognostic capacity of early neuroimaging and neurophysiological biomarkers of mobility outcomes up to 24-months post-stroke. MethodsMEDLINE and EMBASE were searched from inception to June 2025. Cohort studies that reported neuroimaging or neurophysiological biomarkers measured [&le;]14-days post-stroke and mobility outcome(s) assessed >14-days and [&le;]24-months post-stroke were included. Biomarker analyses were classified by statistical analysis approach (association, discrimination/classification or validation). Magnitude of relevant statistical measures was used as the primary indicator of prognostic capacity. Risk of bias was assessed using the Quality in Prognostic Studies tool. Meta-analysis was not performed due to heterogeneity. ResultsTwenty reports from 18 independent study samples (n=2,160 participants) were included. Biomarkers were measured a median 7.5-days post-stroke, and outcomes were assessed between 1- and 12-months. Eighty-six biomarker analyses were identified (61 neuroimaging, 25 neurophysiological) and the majority used an association approach (88%). Few used discrimination/classification methods (11%), and only one conducted internal validation (1%); an MRI-based machine learning model which demonstrated excellent discrimination but still requires external validation. Structural and functional corticospinal tract integrity were frequently investigated, and most associations were small or non-significant. Lesion location and size were also commonly examined, but findings were inconsistent and often lacked magnitude reporting. Methodological limitations were common, including small sample sizes, moderate to high risk of bias, poor reporting of magnitudes, and heterogeneous outcome measures and follow-up time points. ConclusionsCurrent evidence provides limited support for early neuroimaging and neurophysiological biomarkers to prognosticate post-stroke mobility outcomes. Most analyses remain at the association stage, with minimal progress toward validation and clinical implementation. Advancing the field requires international collaboration using harmonized methodologies, standardised statistical reporting, and consistent outcome measures and timepoints. RegistrationURL: https://www.crd.york.ac.uk/prospero/; Unique identifier: CRD42022350771.
Page 2 of 32311 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.