Sort by:
Page 2 of 216 results

Computationally Efficient Diffusion Models in Medical Imaging: A Comprehensive Review

Abdullah, Tao Huang, Ickjai Lee, Euijoon Ahn

arxiv logopreprintMay 9 2025
The diffusion model has recently emerged as a potent approach in computer vision, demonstrating remarkable performances in the field of generative artificial intelligence. Capable of producing high-quality synthetic images, diffusion models have been successfully applied across a range of applications. However, a significant challenge remains with the high computational cost associated with training and generating these models. This study focuses on the efficiency and inference time of diffusion-based generative models, highlighting their applications in both natural and medical imaging. We present the most recent advances in diffusion models by categorizing them into three key models: the Denoising Diffusion Probabilistic Model (DDPM), the Latent Diffusion Model (LDM), and the Wavelet Diffusion Model (WDM). These models play a crucial role in medical imaging, where producing fast, reliable, and high-quality medical images is essential for accurate analysis of abnormalities and disease diagnosis. We first investigate the general framework of DDPM, LDM, and WDM and discuss the computational complexity gap filled by these models in natural and medical imaging. We then discuss the current limitations of these models as well as the opportunities and future research directions in medical imaging.

Medical machine learning operations: a framework to facilitate clinical AI development and deployment in radiology.

de Almeida JG, Messiou C, Withey SJ, Matos C, Koh DM, Papanikolaou N

pubmed logopapersMay 8 2025
The integration of machine-learning technologies into radiology practice has the potential to significantly enhance diagnostic workflows and patient care. However, the successful deployment and maintenance of medical machine-learning (MedML) systems in radiology requires robust operational frameworks. Medical machine-learning operations (MedMLOps) offer a structured approach ensuring persistent MedML reliability, safety, and clinical relevance. MedML systems are increasingly employed to analyse sensitive clinical and radiological data, which continuously changes due to advancements in data acquisition and model development. These systems can alleviate the workload of radiologists by streamlining diagnostic tasks, such as image interpretation and triage. MedMLOps ensures that such systems stay accurate and dependable by facilitating continuous performance monitoring, systematic validation, and simplified model maintenance-all critical to maintaining trust in machine-learning-driven diagnostics. Furthermore, MedMLOps aligns with established principles of patient data protection and regulatory compliance, including recent developments in the European Union, emphasising transparency, documentation, and safe model retraining. This enables radiologists to implement modern machine-learning tools with control and oversight at the forefront, ensuring reliable model performance within the dynamic context of clinical practice. MedMLOps empowers radiologists to deliver consistent, high-quality care with confidence, ensuring that MedML systems stay aligned with evolving medical standards and patient needs. MedMLOps can assist multiple stakeholders in radiology by ensuring models are available, continuously monitored and easy to use and maintain while preserving patient privacy. MedMLOps can better serve patients by facilitating the clinical implementation of cutting-edge MedML and clinicians by ensuring that MedML models are only utilised when they are performing as expected. KEY POINTS: Question MedML applications are becoming increasingly adopted in clinics, but the necessary infrastructure to sustain these applications is currently not well-defined. Findings Adapting machine learning operations concepts enhances MedML ecosystems by improving interoperability, automating monitoring/validation, and reducing deployment burdens on clinicians and medical informaticians. Clinical relevance Implementing these solutions eases the faster and safer adoption of advanced MedML models, ensuring consistent performance while reducing workload for clinicians, benefiting patient care through streamlined diagnostic workflows.

Prompt Engineering for Large Language Models in Interventional Radiology.

Dietrich N, Bradbury NC, Loh C

pubmed logopapersMay 7 2025
Prompt engineering plays a crucial role in optimizing artificial intelligence (AI) and large language model (LLM) outputs by refining input structure, a key factor in medical applications where precision and reliability are paramount. This Clinical Perspective provides an overview of prompt engineering techniques and their relevance to interventional radiology (IR). It explores key strategies, including zero-shot, one- or few-shot, chain-of-thought, tree-of-thought, self-consistency, and directional stimulus prompting, demonstrating their application in IR-specific contexts. Practical examples illustrate how these techniques can be effectively structured for workplace and clinical use. Additionally, the article discusses best practices for designing effective prompts and addresses challenges in the clinical use of generative AI, including data privacy and regulatory concerns. It concludes with an outlook on the future of generative AI in IR, highlighting advances including retrieval-augmented generation, domain-specific LLMs, and multimodal models.

Deep learning approaches for classification tasks in medical X-ray, MRI, and ultrasound images: a scoping review.

Laçi H, Sevrani K, Iqbal S

pubmed logopapersMay 7 2025
Medical images occupy the largest part of the existing medical information and dealing with them is challenging not only in terms of management but also in terms of interpretation and analysis. Hence, analyzing, understanding, and classifying them, becomes a very expensive and time-consuming task, especially if performed manually. Deep learning is considered a good solution for image classification, segmentation, and transfer learning tasks since it offers a large number of algorithms to solve such complex problems. PRISMA-ScR guidelines have been followed to conduct the scoping review with the aim of exploring how deep learning is being used to classify a broad spectrum of diseases diagnosed using an X-ray, MRI, or Ultrasound image modality.Findings contribute to the existing research by outlining the characteristics of the adopted datasets and the preprocessing or augmentation techniques applied to them. The authors summarized all relevant studies based on the deep learning models used and the accuracy achieved for classification. Whenever possible, they included details about the hardware and software configurations, as well as the architectural components of the models employed. Moreover, the models that achieved the highest accuracy in disease classification were highlighted, along with their strengths. The authors also discussed the limitations of the current approaches and proposed future directions for medical image classification.

Impact of the recent advances in coronary artery disease imaging on pilot medical certification and aviation safety: current state and future perspective.

Benjamin MM, Rabbat MG, Park W, Benjamin M, Davenport E

pubmed logopapersMay 7 2025
Coronary artery disease (CAD) is highly prevalent among pilots due to the nature of their lifestyle, and occupational stresses. CAD is one the most common conditions affecting pilots' medical certification and is frequently nondisclosed by pilots fearing the loss of their certification. Traditional screening methods, such as resting electrocardiograms (EKGs) and functional stress tests, have limitations, especially in detecting non-obstructive CAD. Recent advances in cardiac imaging are challenging the current paradigms of CAD screening and risk assessment protocols, offering tools uniquely suited to address the occupational health challenges faced by pilots. Coronary artery calcium scoring (CACS) has proven valuable in refining risk stratification in asymptomatic individuals. Coronary computed tomography angiography (CCTA), is being increasingly adopted as a superior tool for ruling out CAD in symptomatic individuals, assessing plaque burden as well as morphologically identifying vulnerable plaque. CT-derived fractional flow reserve (CT-FFR) adds a physiologic component to the anatomical prowess of CCTA. Cardiac magnetic resonance imaging (CMR) is now used as a prognosticating tool following a coronary event as well as a stress testing modality. Investigational technologies like pericoronary fat attenuation and artificial intelligence (AI)-enabled plaque quantification hold the promise of enhancing diagnostic accuracy and risk stratification. This review highlights the interplay between occupational demands, regulatory considerations, and the limitations of the traditional modalities for pilot CAD screening and surveillance. We also discuss the potential role of the recent advances in cardiac imaging in optimizing pilot health and flight safety.

New Targets for Imaging in Nuclear Medicine.

Brink A, Paez D, Estrada Lobato E, Delgado Bolton RC, Knoll P, Korde A, Calapaquí Terán AK, Haidar M, Giammarile F

pubmed logopapersMay 6 2025
Nuclear medicine is rapidly evolving with new molecular imaging targets and advanced computational tools that promise to enhance diagnostic precision and personalized therapy. Recent years have seen a surge in novel PET and SPECT tracers, such as those targeting prostate-specific membrane antigen (PSMA) in prostate cancer, fibroblast activation protein (FAP) in tumor stroma, and tau protein in neurodegenerative disease. These tracers enable more specific visualization of disease processes compared to traditional agents, fitting into a broader shift toward precision imaging in oncology and neurology. In parallel, artificial intelligence (AI) and machine learning techniques are being integrated into tracer development and image analysis. AI-driven methods can accelerate radiopharmaceutical discovery, optimize pharmacokinetic properties, and assist in interpreting complex imaging datasets. This editorial provides an expanded overview of emerging imaging targets and techniques, including theranostic applications that pair diagnosis with radionuclide therapy, and examines how AI is augmenting nuclear medicine. We discuss the implications of these advancements within the field's historical trajectory and address the regulatory, manufacturing, and clinical challenges that must be navigated. Innovations in molecular targeting and AI are poised to transform nuclear medicine practice, enabling more personalized diagnostics and radiotheranostic strategies in the era of precision healthcare.
Page 2 of 216 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.