Sort by:
Page 2 of 42411 results

Medical image translation with deep learning: Advances, datasets and perspectives.

Chen J, Ye Z, Zhang R, Li H, Fang B, Zhang LB, Wang W

pubmed logopapersJul 1 2025
Traditional medical image generation often lacks patient-specific clinical information, limiting its clinical utility despite enhancing downstream task performance. In contrast, medical image translation precisely converts images from one modality to another, preserving both anatomical structures and cross-modal features, thus enabling efficient and accurate modality transfer and offering unique advantages for model development and clinical practice. This paper reviews the latest advancements in deep learning(DL)-based medical image translation. Initially, it elaborates on the diverse tasks and practical applications of medical image translation. Subsequently, it provides an overview of fundamental models, including convolutional neural networks (CNNs), transformers, and state space models (SSMs). Additionally, it delves into generative models such as Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), Autoregressive Models (ARs), diffusion Models, and flow Models. Evaluation metrics for assessing translation quality are discussed, emphasizing their importance. Commonly used datasets in this field are also analyzed, highlighting their unique characteristics and applications. Looking ahead, the paper identifies future trends, challenges, and proposes research directions and solutions in medical image translation. It aims to serve as a valuable reference and inspiration for researchers, driving continued progress and innovation in this area.

Integrating prior knowledge with deep learning for optimized quality control in corneal images: A multicenter study.

Li FF, Li GX, Yu XX, Zhang ZH, Fu YN, Wu SQ, Wang Y, Xiao C, Ye YF, Hu M, Dai Q

pubmed logopapersJul 1 2025
Artificial intelligence (AI) models are effective for analyzing high-quality slit-lamp images but often face challenges in real-world clinical settings due to image variability. This study aims to develop and evaluate a hybrid AI-based image quality control system to classify slit-lamp images, improving diagnostic accuracy and efficiency, particularly in telemedicine applications. Cross-sectional study. Our Zhejiang Eye Hospital dataset comprised 2982 slit-lamp images as the internal dataset. Two external datasets were included: 13,554 images from the Aier Guangming Eye Hospital (AGEH) and 9853 images from the First People's Hospital of Aksu District in Xinjiang (FPH of Aksu). We developed a Hybrid Prior-Net (HP-Net), a novel network that combines a ResNet-based classification branch with a prior knowledge branch leveraging Hough circle transform and frequency domain blur detection. The two branches' features are channel-wise concatenated at the fully connected layer, enhancing representational power and improving the network's ability to classify eligible, misaligned, blurred, and underexposed corneal images. Model performance was evaluated using metrics such as accuracy, precision, recall, specificity, and F1-score, and compared against the performance of other deep learning models. The HP-Net outperformed all other models, achieving an accuracy of 99.03 %, precision of 98.21 %, recall of 95.18 %, specificity of 99.36 %, and an F1-score of 96.54 % in image classification. The results demonstrated that HP-Net was also highly effective in filtering slit-lamp images from the other two datasets, AGEH and FPH of Aksu with accuracies of 97.23 % and 96.97 %, respectively. These results underscore the superior feature extraction and classification capabilities of HP-Net across all evaluated metrics. Our AI-based image quality control system offers a robust and efficient solution for classifying corneal images, with significant implications for telemedicine applications. By incorporating slightly blurred but diagnostically usable images into training datasets, the system enhances the reliability and adaptability of AI tools for medical imaging quality control, paving the way for more accurate and efficient diagnostic workflows.

The Evolution of Radiology Image Annotation in the Era of Large Language Models.

Flanders AE, Wang X, Wu CC, Kitamura FC, Shih G, Mongan J, Peng Y

pubmed logopapersJul 1 2025
Although there are relatively few diverse, high-quality medical imaging datasets on which to train computer vision artificial intelligence models, even fewer datasets contain expertly classified observations that can be repurposed to train or test such models. The traditional annotation process is laborious and time-consuming. Repurposing annotations and consolidating similar types of annotations from disparate sources has never been practical. Until recently, the use of natural language processing to convert a clinical radiology report into labels required custom training of a language model for each use case. Newer technologies such as large language models have made it possible to generate accurate and normalized labels at scale, using only clinical reports and specific prompt engineering. The combination of automatically generated labels extracted and normalized from reports in conjunction with foundational image models provides a means to create labels for model training. This article provides a short history and review of the annotation and labeling process of medical images, from the traditional manual methods to the newest semiautomated methods that provide a more scalable solution for creating useful models more efficiently. <b>Keywords:</b> Feature Detection, Diagnosis, Semi-supervised Learning © RSNA, 2025.

Structural uncertainty estimation for medical image segmentation.

Yang B, Zhang X, Zhang H, Li S, Higashita R, Liu J

pubmed logopapersJul 1 2025
Precise segmentation and uncertainty estimation are crucial for error identification and correction in medical diagnostic assistance. Existing methods mainly rely on pixel-wise uncertainty estimations. They (1) neglect the global context, leading to erroneous uncertainty indications, and (2) bring attention interference, resulting in the waste of extensive details and potential understanding confusion. In this paper, we propose a novel structural uncertainty estimation method, based on Convolutional Neural Networks (CNN) and Active Shape Models (ASM), named SU-ASM, which incorporates global shape information for providing precise segmentation and uncertainty estimation. The SU-ASM consists of three components. Firstly, multi-task generation provides multiple outcomes to assist ASM initialization and shape optimization via a multi-task learning module. Secondly, information fusion involves the creation of a Combined Boundary Probability (CBP) and along with a rapid shape initialization algorithm, Key Landmark Template Matching (KLTM), to enhance boundary reliability and select appropriate shape templates. Finally, shape model fitting where multiple shape templates are matched to the CBP while maintaining their intrinsic shape characteristics. Fitted shapes generate segmentation results and structural uncertainty estimations. The SU-ASM has been validated on cardiac ultrasound dataset, ciliary muscle dataset of the anterior eye segment, and the chest X-ray dataset. It outperforms state-of-the-art methods in terms of segmentation and uncertainty estimation.

One for multiple: Physics-informed synthetic data boosts generalizable deep learning for fast MRI reconstruction.

Wang Z, Yu X, Wang C, Chen W, Wang J, Chu YH, Sun H, Li R, Li P, Yang F, Han H, Kang T, Lin J, Yang C, Chang S, Shi Z, Hua S, Li Y, Hu J, Zhu L, Zhou J, Lin M, Guo J, Cai C, Chen Z, Guo D, Yang G, Qu X

pubmed logopapersJul 1 2025
Magnetic resonance imaging (MRI) is a widely used radiological modality renowned for its radiation-free, comprehensive insights into the human body, facilitating medical diagnoses. However, the drawback of prolonged scan times hinders its accessibility. The k-space undersampling offers a solution, yet the resultant artifacts necessitate meticulous removal during image reconstruction. Although deep learning (DL) has proven effective for fast MRI image reconstruction, its broader applicability across various imaging scenarios has been constrained. Challenges include the high cost and privacy restrictions associated with acquiring large-scale, diverse training data, coupled with the inherent difficulty of addressing mismatches between training and target data in existing DL methodologies. Here, we present a novel Physics-Informed Synthetic data learning Framework for fast MRI, called PISF. PISF marks a breakthrough by enabling generalizable DL for multi-scenario MRI reconstruction through a single trained model. Our approach separates the reconstruction of a 2D image into many 1D basic problems, commencing with 1D data synthesis to facilitate generalization. We demonstrate that training DL models on synthetic data, coupled with enhanced learning techniques, yields in vivo MRI reconstructions comparable to or surpassing those of models trained on matched realistic datasets, reducing the reliance on real-world MRI data by up to 96 %. With a single trained model, our PISF supports the high-quality reconstruction under 4 sampling patterns, 5 anatomies, 6 contrasts, 5 vendors, and 7 centers, exhibiting remarkable generalizability. Its adaptability to 2 neuro and 2 cardiovascular patient populations has been validated through evaluations by 10 experienced medical professionals. In summary, PISF presents a feasible and cost-effective way to significantly boost the widespread adoption of DL in various fast MRI applications.

Deep Learning Model for Real-Time Nuchal Translucency Assessment at Prenatal US.

Zhang Y, Yang X, Ji C, Hu X, Cao Y, Chen C, Sui H, Li B, Zhen C, Huang W, Deng X, Yin L, Ni D

pubmed logopapersJul 1 2025
Purpose To develop and evaluate an artificial intelligence-based model for real-time nuchal translucency (NT) plane identification and measurement in prenatal US assessments. Materials and Methods In this retrospective multicenter study conducted from January 2022 to October 2023, the Automated Identification and Measurement of NT (AIM-NT) model was developed and evaluated using internal and external datasets. NT plane assessment, including identification of the NT plane and measurement of NT thickness, was independently conducted by AIM-NT and experienced radiologists, with the results subsequently audited by radiology specialists and accuracy compared between groups. To assess alignment of artificial intelligence with radiologist workflow, discrepancies between the AIM-NT model and radiologists in NT plane identification time and thickness measurements were evaluated. Results The internal dataset included a total of 3959 NT images from 3153 fetuses, and the external dataset included 267 US videos from 267 fetuses. On the internal testing dataset, AIM-NT achieved an area under the receiver operating characteristic curve of 0.92 for NT plane identification. On the external testing dataset, there was no evidence of differences between AIM-NT and radiologists in NT plane identification accuracy (88.8% vs 87.6%, <i>P</i> = .69) or NT thickness measurements on standard and nonstandard NT planes (<i>P</i> = .29 and .59). AIM-NT demonstrated high consistency with radiologists in NT plane identification time, with 1-minute discrepancies observed in 77.9% of cases, and NT thickness measurements, with a mean difference of 0.03 mm and mean absolute error of 0.22 mm (95% CI: 0.19, 0.25). Conclusion AIM-NT demonstrated high accuracy in identifying the NT plane and measuring NT thickness on prenatal US images, showing minimal discrepancies with radiologist workflow. <b>Keywords:</b> Ultrasound, Fetus, Segmentation, Feature Detection, Diagnosis, Convolutional Neural Network (CNN) <i>Supplemental material is available for this article.</i> © RSNA, 2025 See also commentary by Horii in this issue.

Human visual perception-inspired medical image segmentation network with multi-feature compression.

Li G, Huang Q, Wang W, Liu L

pubmed logopapersJul 1 2025
Medical image segmentation is crucial for computer-aided diagnosis and treatment planning, directly influencing clinical decision-making. To enhance segmentation accuracy, existing methods typically fuse local, global, and various other features. However, these methods often ignore the negative impact of noise on the results during the feature fusion process. In contrast, certain regions of the human visual system, such as the inferotemporal cortex and parietal cortex, effectively suppress irrelevant noise while integrating multiple features-a capability lacking in current methods. To address this gap, we propose MS-Net, a medical image segmentation network inspired by human visual perception. MS-Net incorporates a multi-feature compression (MFC) module that mimics the human visual system's processing of complex images, first learning various feature types and subsequently filtering out irrelevant ones. Additionally, MS-Net features a segmentation refinement (SR) module that emulates how physicians segment lesions. This module initially performs coarse segmentation to capture the lesion's approximate location and shape, followed by a refinement step to achieve precise boundary delineation. Experimental results demonstrate that MS-Net not only attains state-of-the-art segmentation performance across three public datasets but also significantly reduces the number of parameters compared to existing models. Code is available at https://github.com/guangguangLi/MS-Net.

Federated Learning in radiomics: A comprehensive meta-survey on medical image analysis.

Raza A, Guzzo A, Ianni M, Lappano R, Zanolini A, Maggiolini M, Fortino G

pubmed logopapersJul 1 2025
Federated Learning (FL) has emerged as a promising approach for collaborative medical image analysis while preserving data privacy, making it particularly suitable for radiomics tasks. This paper presents a systematic meta-analysis of recent surveys on Federated Learning in Medical Imaging (FL-MI), published in reputable venues over the past five years. We adopt the PRISMA methodology, categorizing and analyzing the existing body of research in FL-MI. Our analysis identifies common trends, challenges, and emerging strategies for implementing FL in medical imaging, including handling data heterogeneity, privacy concerns, and model performance in non-IID settings. The paper also highlights the most widely used datasets and a comparison of adopted machine learning models. Moreover, we examine FL frameworks in FL-MI applications, such as tumor detection, organ segmentation, and disease classification. We identify several research gaps, including the need for more robust privacy protection. Our findings provide a comprehensive overview of the current state of FL-MI and offer valuable directions for future research and development in this rapidly evolving field.

Deep Learning Based on Ultrasound Images Differentiates Parotid Gland Pleomorphic Adenomas and Warthin Tumors.

Li Y, Zou M, Zhou X, Long X, Liu X, Yao Y

pubmed logopapersJul 1 2025
Exploring the clinical significance of employing deep learning methodologies on ultrasound images for the development of an automated model to accurately identify pleomorphic adenomas and Warthin tumors in salivary glands. A retrospective study was conducted on 91 patients who underwent ultrasonography examinations between January 2016 and December 2023 and were subsequently diagnosed with pleomorphic adenoma or Warthin's tumor based on postoperative pathological findings. A total of 526 ultrasonography images were collected for analysis. Convolutional neural network (CNN) models, including ResNet18, MobileNetV3Small, and InceptionV3, were trained and validated using these images for the differentiation of pleomorphic adenoma and Warthin's tumor. Performance evaluation metrics such as receiver operating characteristic (ROC) curves, area under the curve (AUC), sensitivity, specificity, positive predictive value, and negative predictive value were utilized. Two ultrasound physicians, with varying levels of expertise, conducted independent evaluations of the ultrasound images. Subsequently, a comparative analysis was performed between the diagnostic outcomes of the ultrasound physicians and the results obtained from the best-performing model. Inter-rater agreement between routine ultrasonography interpretation by the two expert ultrasonographers and the automatic identification diagnosis of the best model in relation to pathological results was assessed using kappa tests. The deep learning models achieved favorable performance in differentiating pleomorphic adenoma from Warthin's tumor. The ResNet18, MobileNetV3Small, and InceptionV3 models exhibited diagnostic accuracies of 82.4% (AUC: 0.932), 87.0% (AUC: 0.946), and 77.8% (AUC: 0.811), respectively. Among these models, MobileNetV3Small demonstrated the highest performance. The experienced ultrasonographer achieved a diagnostic accuracy of 73.5%, with sensitivity, specificity, positive predictive value, and negative predictive value of 73.7%, 73.3%, 77.8%, and 68.8%, respectively. The less-experienced ultrasonographer achieved a diagnostic accuracy of 69.0%, with sensitivity, specificity, positive predictive value, and negative predictive value of 66.7%, 71.4%, 71.4%, and 66.7%, respectively. The kappa test revealed strong consistency between the best-performing deep learning model and postoperative pathological diagnoses (kappa value: .778, <i>p</i>-value < .001). In contrast, the less-experienced ultrasonographer demonstrated poor consistency in image interpretations (kappa value: .380, <i>p</i>-value < .05). The diagnostic accuracy of the best deep learning model was significantly higher than that of the ultrasonographers, and the experienced ultrasonographer exhibited higher diagnostic accuracy than the less-experienced one. This study demonstrates the promising performance of a deep learning-based method utilizing ultrasonography images for the differentiation of pleomorphic adenoma and Warthin's tumor. The approach reduces subjective errors, provides decision support for clinicians, and improves diagnostic consistency.

Development and validation of a nomogram for predicting bone marrow involvement in lymphoma patients based on <sup>18</sup>F-FDG PET radiomics and clinical factors.

Lu D, Zhu X, Mu X, Huang X, Wei F, Qin L, Liu Q, Fu W, Deng Y

pubmed logopapersJul 1 2025
This study aimed to develop and validate a nomogram combining <sup>18</sup>F-FDG PET radiomics and clinical factors to non-invasively predict bone marrow involvement (BMI) in patients with lymphoma. A radiomics nomogram was developed using monocentric data, randomly divided into a training set (70%) and a test set (30%). Bone marrow biopsy (BMB) served as the gold standard for BMI diagnosis. Independent clinical risk factors were identified through univariate and multivariate logistic regression analyses to construct a clinical model. Radiomics features were extracted from PET and CT images and selected using least absolute shrinkage and selection operator (LASSO) regression, yielding a radiomics score (Rad<sub>score</sub>) for each patient. Models based on clinical factors, CT Rad<sub>score</sub>, and PET Rad<sub>score</sub> were established and evaluated using eight machine learning algorithms to identify the optimal prediction model. A combined model was constructed and presented as a nomogram. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis (DCA). A total of 160 patients were included, of whom 70 had BMI based on BMB results. The training group comprised 112 patients (BMI: 56, without BMI: 56), while the test group included 48 patients (BMI: 14, without BMI: 34). Independent risk factors, including the number of extranodal involvements and B symptoms, were incorporated into the clinical model. In the clinical model, CT Rad<sub>score</sub>, and PET Rad<sub>score</sub>, the AUCs in the test set were 0.820 (95% CI: 0.705-0.935), 0.538 (95% CI: 0.351-0.723), and 0.836 (95% CI: 0.686-0.986). Due to the limited diagnostic performance of CT Rad<sub>score</sub>, the nomogram was constructed using PET Rad<sub>score</sub> and the clinical model. The radiomics nomogram achieved AUCs of 0.916 (95% CI: 0.865-0.967) in the training set and 0.863 (95% CI: 0.763-0.964) in the test set. Calibration curves and DCA confirmed the nomogram's discrimination, calibration, and clinical utility in both sets. By integrating PET Rad<sub>score</sub>, the number of extranodal involvements, and B symptoms, this <sup>18</sup>F-FDG PET radiomics-based nomogram offers a non-invasive method to predict bone marrow status in lymphoma patients, providing nuclear medicine physicians with valuable decision support for pre-treatment evaluation.
Page 2 of 42411 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.