Sort by:
Page 18 of 1261258 results

Transformer attention-based neural network for cognitive score estimation from sMRI data.

Li S, Zhang Y, Zou C, Zhang L, Li F, Liu Q

pubmed logopapersJul 3 2025
Accurately predicting cognitive scores based on structural MRI holds significant clinical value for understanding the pathological stages of dementia and forecasting Alzheimer's disease (AD). Some existing deep learning methods often depend on anatomical priors, overlooking individual-specific structural differences during AD progression. To address these limitations, this work proposes a deep neural network that incorporates Transformer attention to jointly predict multiple cognitive scores, including ADAS, CDRSB, and MMSE. The architecture first employs a 3D convolutional neural network backbone to encode sMRI, capturing preliminary local structural information. Then an improved Transformer attention block integrated with 3D positional encoding and 3D convolutional layer to adaptively capture discriminative imaging features across the brain, thereby focusing on key cognitive-related regions effectively. Finally, an attention-aware regression network enables the joint prediction of multiple clinical scores. Experimental results demonstrate that our method outperforms some existing traditional and deep learning methods based on the ADNI dataset. Further qualitative analysis reveals that the dementia-related brain regions identified by the model hold important biological significance, effectively enhancing the performance of cognitive score prediction. Our code is publicly available at: https://github.com/lshsx/CTA_MRI.

BrainAGE latent representation clustering is associated with longitudinal disease progression in early-onset Alzheimer's disease.

Manouvriez D, Kuchcinski G, Roca V, Sillaire AR, Bertoux M, Delbeuck X, Pruvo JP, Lecerf S, Pasquier F, Lebouvier T, Lopes R

pubmed logopapersJul 3 2025
Early-onset Alzheimer's disease (EOAD) population is a clinically, genetically and pathologically heterogeneous condition. Identifying biomarkers related to disease progression is crucial for advancing clinical trials and improving therapeutic strategies. This study aims to differentiate EOAD patients with varying rates of progression using Brain Age Gap Estimation (BrainAGE)-based clustering algorithm applied to structural magnetic resonance images (MRI). A retrospective analysis of a longitudinal cohort consisting of 142 participants who met the criteria for early-onset probable Alzheimer's disease was conducted. Participants were assessed clinically, neuropsychologically and with structural MRI at baseline and annually for 6 years. A Brain Age Gap Estimation (BrainAGE) deep learning model pre-trained on 3,227 3D T1-weighted MRI of healthy subjects was used to extract encoded MRI representations at baseline. Then, k-means clustering was performed on these encoded representations to stratify the population. The resulting clusters were then analyzed for disease severity, cognitive phenotype and brain volumes at baseline and longitudinally. The optimal number of clusters was determined to be 2. Clusters differed significantly in BrainAGE scores (5.44 [± 8] years vs 15.25 [± 5 years], p < 0.001). The high BrainAGE cluster was associated with older age (p = 0.001) and higher proportion of female patients (p = 0.005), as well as greater disease severity based on Mini Mental State Examination (MMSE) scores (19.32 [±4.62] vs 14.14 [±6.93], p < 0.001) and gray matter volume (0.35 [±0.03] vs 0.32 [±0.02], p < 0.001). Longitudinal analyses revealed significant differences in disease progression (MMSE decline of -2.35 [±0.15] pts/year vs -3.02 [±0.25] pts/year, p = 0.02; CDR 1.58 [±0.10] pts/year vs 1.99 [±0.16] pts/year, p = 0.03). K-means clustering of BrainAGE encoded representations stratified EOAD patients based on varying rates of disease progression. These findings underscore the potential of using BrainAGE as a biomarker for better understanding and managing EOAD.

PiCME: Pipeline for Contrastive Modality Evaluation and Encoding in the MIMIC Dataset

Michal Golovanevsky, Pranav Mahableshwarkar, Carsten Eickhoff, Ritambhara Singh

arxiv logopreprintJul 3 2025
Multimodal deep learning holds promise for improving clinical prediction by integrating diverse patient data, including text, imaging, time-series, and structured demographics. Contrastive learning facilitates this integration by producing a unified representation that can be reused across tasks, reducing the need for separate models or encoders. Although contrastive learning has seen success in vision-language domains, its use in clinical settings remains largely limited to image and text pairs. We propose the Pipeline for Contrastive Modality Evaluation and Encoding (PiCME), which systematically assesses five clinical data types from MIMIC: discharge summaries, radiology reports, chest X-rays, demographics, and time-series. We pre-train contrastive models on all 26 combinations of two to five modalities and evaluate their utility on in-hospital mortality and phenotype prediction. To address performance plateaus with more modalities, we introduce a Modality-Gated LSTM that weights each modality according to its contrastively learned importance. Our results show that contrastive models remain competitive with supervised baselines, particularly in three-modality settings. Performance declines beyond three modalities, which supervised models fail to recover. The Modality-Gated LSTM mitigates this drop, improving AUROC from 73.19% to 76.93% and AUPRC from 51.27% to 62.26% in the five-modality setting. We also compare contrastively learned modality importance scores with attribution scores and evaluate generalization across demographic subgroups, highlighting strengths in interpretability and fairness. PiCME is the first to scale contrastive learning across all modality combinations in MIMIC, offering guidance for modality selection, training strategies, and equitable clinical prediction.

Outcome prediction and individualized treatment effect estimation in patients with large vessel occlusion stroke

Lisa Herzog, Pascal Bühler, Ezequiel de la Rosa, Beate Sick, Susanne Wegener

arxiv logopreprintJul 3 2025
Mechanical thrombectomy has become the standard of care in patients with stroke due to large vessel occlusion (LVO). However, only 50% of successfully treated patients show a favorable outcome. We developed and evaluated interpretable deep learning models to predict functional outcomes in terms of the modified Rankin Scale score alongside individualized treatment effects (ITEs) using data of 449 LVO stroke patients from a randomized clinical trial. Besides clinical variables, we considered non-contrast CT (NCCT) and angiography (CTA) scans which were integrated using novel foundation models to make use of advanced imaging information. Clinical variables had a good predictive power for binary functional outcome prediction (AUC of 0.719 [0.666, 0.774]) which could slightly be improved when adding CTA imaging (AUC of 0.737 [0.687, 0.795]). Adding NCCT scans or a combination of NCCT and CTA scans to clinical features yielded no improvement. The most important clinical predictor for functional outcome was pre-stroke disability. While estimated ITEs were well calibrated to the average treatment effect, discriminatory ability was limited indicated by a C-for-Benefit statistic of around 0.55 in all models. In summary, the models allowed us to jointly integrate CT imaging and clinical features while achieving state-of-the-art prediction performance and ITE estimates. Yet, further research is needed to particularly improve ITE estimation.

Group-derived and individual disconnection in stroke: recovery prediction and deep graph learning

Bey, P., Dhindsa, K., Rackoll, T., Feldheim, J., Bönstrup, M., Thomalla, G., Schulz, R., Cheng, B., Gerloff, C., Endres, M., Nave, A. H., Ritter, P.

medrxiv logopreprintJul 3 2025
Recent advances in the treatment of acute ischemic stroke contribute to improved patient outcomes, yet the mechanisms driving long-term disease trajectory are not well-understood. Current trends in the literature emphasize the distributed disruptive impact of stroke lesions on brain network organization. While most studies use population-derived data to investigate lesion interference on healthy tissue, the potential for individualized treatment strategies remains underexplored due to a lack of availability and effective utilization of the necessary clinical imaging data. To validate the potential for individualized patient evaluation, we explored and compared the differential information in network models based on normative and individual data. We further present our novel deep learning approach providing usable and accurate estimates of individual stroke impact utilizing minimal imaging data, thus bridging the data gap hindering individualized treatment planning. We created normative and individual disconnectomes for each of 78 patients (mean age 65.1 years, 32 females) from two independent cohort studies. MRI data and Barthel Index, as a measure of activities of daily living, were collected in the acute and early sub-acute phase after stroke (baseline) and at three months post stroke incident. Disconnectomes were subsequently described using 12 network metrics, including clustering coefficient and transitivity. Metrics were first compared between disconnectomes and further utilized as features in a classifier to predict a patients disease trajectory, as defined by three months Barthel Index. We then developed a deep learning architecture based on graph convolution and trained it to predict properties of the individual disconnectomes from the normative disconnectomes. Both disconnectomes showed statistically significant differences in topology and predictive power. Normative disconnectomes included a statistically significant larger number of connections (N=604 for normative versus N=210 for individual) and agreement between network properties ranged from r2=0.01 for clustering coefficient to r2=0.8 for assortativity, highlighting the impact of disconnectome choice on subsequent analysis. To predict patient deficit severity, individual data achieved an AUC score of 0.94 compared to an AUC score of 0.85 for normative based features. Our deep learning estimates showed high correlation with individual features (mean r2=0.94) and a comparable performance with an AUC score of 0.93. We were able to show how normative data-based analysis of stroke disconnections provides limited information regarding patient recovery. In contrast, individual data provided higher prognostic precision. We presented a novel approach to curb the need for individual data while retaining most of the differential information encoding individual patient disease trajectory.

Habitat-Derived Radiomic Features of Planning Target Volume to Determine the Local Recurrence After Radiotherapy in Patients with Gliomas: A Feasibility Study.

Wang Y, Lin L, Hu Z, Wang H

pubmed logopapersJul 2 2025
To develop a machine learning-based predictive model for local recurrence after radiotherapy in patients with gliomas, with interpretability enhanced through SHapley Additive exPlanations (SHAP). We retrospectively enrolled 145 patients with pathologically confirmed gliomas who underwent brain radiotherapy (training: validation = 102:43). Physiological and structural magnetic resonance imaging (MRI) were used to define habitat regions. A total of 2153 radiomic features were extracted from each MRI sequence in each habitat region, respectively. Relief and Recursive Feature Elimination were used for radiomic feature selection. Support vector machine (SVM) and random forest models incorporating clinical and radiomic features were constructed for each habitat region. The SHAP method was used to explain the predictive model. In the training cohort and validation cohort, the Physiological_Habitat1 (e-THRIVE)_radiomic SVM model demonstrated the best AUC of 0.703 (95% CI 0.569-0.836) and 0.670 (95% CI 0.623-0.717) compared to the other radiomic models. The SHAP summary plot and SHAP force plot were used to interpret the best-performing Physiological_Habitat1 (e-THRIVE)_radiomic SVM model. Radiomic features derived from the Physiological_Habitat1 (e-THRIVE) were predictive of local recurrence in glioma patients following radiotherapy. The SHAP method provided insights into how the tumor microenvironment might influence the effectiveness of radiotherapy in postoperative gliomas.

Heterogeneity Habitats -Derived Radiomics of Gd-EOB-DTPA Enhanced MRI for Predicting Proliferation of Hepatocellular Carcinoma.

Sun S, Yu Y, Xiao S, He Q, Jiang Z, Fan Y

pubmed logopapersJul 2 2025
To construct and validate the optimal model for preoperative prediction of proliferative HCC based on habitat-derived radiomics features of Gd-EOB-DTPA-Enhanced MRI. A total of 187 patients who underwent Gd-EOB-DTPA-enhanced MRI before curative partial hepatectomy were divided into training (n=130, 50 proliferative and 80 nonproliferative HCC) and validation cohort (n=57, 25 proliferative and 32 nonproliferative HCC). Habitat subregion generation was performed using the Gaussian Mixture Model (GMM) clustering method to cluster all pixels to identify similar subregions within the tumor. Radiomic features were extracted from each tumor subregion in the arterial phase (AP) and hepatobiliary phase (HBP). Independent sample t tests, Pearson correlation coefficient, and Least Absolute Shrinkage and Selection Operator (LASSO) algorithm were performed to select the optimal features of subregions. After feature integration and selection, machine-learning classification models using the sci-kit-learn library were constructed. Receiver Operating Characteristic (ROC) curves and the DeLong test were performed to compare the identified performance for predicting proliferative HCC among these models. The optimal number of clusters was determined to be 3 based on the Silhouette coefficient. 20, 12, and 23 features were retained from the AP, HBP, and the combined AP and HBP habitat (subregions 1, 2, 3) radiomics features. Three models were constructed with these selected features in AP, HBP, and the combined AP and HBP habitat radiomics features. The ROC analysis and DeLong test show that the Naive Bayes model of AP and HBP habitat radiomics (AP-HBP-Hab-Rad) archived the best performance. Finally, the combined model using the Light Gradient Boosting Machine (LightGBM) algorithm, incorporating the AP-HBP-Hab-Rad, age, and AFP (Alpha-Fetoprotein), was identified as the optimal model for predicting proliferative HCC. For the training and validation cohort, the accuracy, sensitivity, specificity, and AUC were 0.923, 0.880, 0.950, 0.966 (95% CI: 0.937-0.994) and 0.825, 0.680, 0.937, 0.877 (95% CI: 0.786-0.969), respectively. In its validation cohort of the combined model, the AUC value was statistically higher than the other models (P<0.01). A combined model, including AP-HBP-Hab-Rad, serum AFP, and age using the LightGBM algorithm, can satisfactorily predict proliferative HCC preoperatively.

Multi-modal models using fMRI, urine and serum biomarkers for classification and risk prognosis in diabetic kidney disease.

Shao X, Xu H, Chen L, Bai P, Sun H, Yang Q, Chen R, Lin Q, Wang L, Li Y, Lin Y, Yu P

pubmed logopapersJul 2 2025
Functional magnetic resonance imaging (fMRI) is a powerful tool for non-invasive evaluation of micro-changes in the kidneys. This study aims to develop classification and prognostic models based on multi-modal data. A total of 172 participants were included, and high-resolution multi-parameter fMRI technology was employed to obtain T2-weighted imaging (T2WI), blood oxygen level dependent (BOLD), and diffusion tensor imaging (DTI) sequence images. Based on clinical indicators, fMRI markers, serum and urine biomarkers (CD300LF, CST4, MMRN2, SERPINA1, l-glutamic acid dimethyl ester and phosphatidylcholine), machine learning algorithms were applied to establish and validate classification diagnosis models (Models 1-6) and risk-prognostic models (Models A-E). Additionally, accuracy, sensitivity, specificity, precision, area under the curve (AUC) and recall were used to evaluate the predictive performance of the models. A total of six classification models were established. Model 5 (fMRI + clinical indicators) exhibited superior performance, with an accuracy of 0.833 (95% confidence interval [CI]: 0.653-0.944). Notably, the multi-modal model incorporating image, serum and urine multi-omics and clinical indicators (Model 6) demonstrated higher predictive performance, achieving an accuracy of 0.923 (95% CI: 0.749-0.991). Furthermore, a total of five prognostic models at 2-year and 3-year follow-up were established. The Model E exhibited superior performance, achieving AUC values of 0.975 at the 2-year follow-up and 0.932 at the 3-year follow-up. Furthermore, Model E can identify patients with a high-risk prognosis. In clinical practice, the multi-modal models presented in this study demonstrate potential to enhance clinical decision-making capabilities regarding patient classification and prognosis prediction.

Artificial Intelligence-Driven Cancer Diagnostics: Enhancing Radiology and Pathology through Reproducibility, Explainability, and Multimodality.

Khosravi P, Fuchs TJ, Ho DJ

pubmed logopapersJul 2 2025
The integration of artificial intelligence (AI) in cancer research has significantly advanced radiology, pathology, and multimodal approaches, offering unprecedented capabilities in image analysis, diagnosis, and treatment planning. AI techniques provide standardized assistance to clinicians, in which many diagnostic and predictive tasks are manually conducted, causing low reproducibility. These AI methods can additionally provide explainability to help clinicians make the best decisions for patient care. This review explores state-of-the-art AI methods, focusing on their application in image classification, image segmentation, multiple instance learning, generative models, and self-supervised learning. In radiology, AI enhances tumor detection, diagnosis, and treatment planning through advanced imaging modalities and real-time applications. In pathology, AI-driven image analysis improves cancer detection, biomarker discovery, and diagnostic consistency. Multimodal AI approaches can integrate data from radiology, pathology, and genomics to provide comprehensive diagnostic insights. Emerging trends, challenges, and future directions in AI-driven cancer research are discussed, emphasizing the transformative potential of these technologies in improving patient outcomes and advancing cancer care. This article is part of a special series: Driving Cancer Discoveries with Computational Research, Data Science, and Machine Learning/AI.

Combining multi-parametric MRI radiomics features with tumor abnormal protein to construct a machine learning-based predictive model for prostate cancer.

Zhang C, Wang Z, Shang P, Zhou Y, Zhu J, Xu L, Chen Z, Yu M, Zang Y

pubmed logopapersJul 2 2025
This study aims to investigate the diagnostic value of integrating multi-parametric magnetic resonance imaging (mpMRI) radiomic features with tumor abnormal protein (TAP) and clinical characteristics for diagnosing prostate cancer. A cohort of 109 patients who underwent both mpMRI and TAP assessments prior to prostate biopsy were enrolled. Radiomic features were meticulously extracted from T2-weighted imaging (T2WI) and the apparent diffusion coefficient (ADC) maps. Feature selection was performed using t-tests and the Least Absolute Shrinkage and Selection Operator (LASSO) regression, followed by model construction using the random forest algorithm. To further enhance the model's accuracy and predictive performance, this study incorporated clinical factors including age, serum prostate-specific antigen (PSA) levels, and prostate volume. By integrating these clinical indicators with radiomic features, a more comprehensive and precise predictive model was developed. Finally, the model's performance was quantified by calculating accuracy, sensitivity, specificity, precision, recall, F1 score, and the area under the curve (AUC). From mpMRI sequences of T2WI, dADC(b = 100/1000 s/mm<sup>2</sup>), and dADC(b = 100/2000 s/mm<sup>2</sup>), 8, 10, and 13 radiomic features were identified as significantly correlated with prostate cancer, respectively. Random forest models constructed based on these three sets of radiomic features achieved AUCs of 0.83, 0.86, and 0.87, respectively. When integrating all three sets of data to formulate a random forest model, an AUC of 0.84 was obtained. Additionally, a random forest model constructed on TAP and clinical characteristics achieved an AUC of 0.85. Notably, combining mpMRI radiomic features with TAP and clinical characteristics, or integrating dADC (b = 100/2000 s/mm²) sequence with TAP and clinical characteristics to construct random forest models, improved the AUCs to 0.91 and 0.92, respectively. The proposed model, which integrates radiomic features, TAP and clinical characteristics using machine learning, demonstrated high predictive efficiency in diagnosing prostate cancer.
Page 18 of 1261258 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.