Sort by:
Page 17 of 22215 results

CENet: Context Enhancement Network for Medical Image Segmentation

Afshin Bozorgpour, Sina Ghorbani Kolahi, Reza Azad, Ilker Hacihaliloglu, Dorit Merhof

arxiv logopreprintMay 23 2025
Medical image segmentation, particularly in multi-domain scenarios, requires precise preservation of anatomical structures across diverse representations. While deep learning has advanced this field, existing models often struggle with accurate boundary representation, variability in organ morphology, and information loss during downsampling, limiting their accuracy and robustness. To address these challenges, we propose the Context Enhancement Network (CENet), a novel segmentation framework featuring two key innovations. First, the Dual Selective Enhancement Block (DSEB) integrated into skip connections enhances boundary details and improves the detection of smaller organs in a context-aware manner. Second, the Context Feature Attention Module (CFAM) in the decoder employs a multi-scale design to maintain spatial integrity, reduce feature redundancy, and mitigate overly enhanced representations. Extensive evaluations on both radiology and dermoscopic datasets demonstrate that CENet outperforms state-of-the-art (SOTA) methods in multi-organ segmentation and boundary detail preservation, offering a robust and accurate solution for complex medical image analysis tasks. The code is publicly available at https://github.com/xmindflow/cenet.

Generative adversarial DacFormer network for MRI brain tumor segmentation.

Zhang M, Sun Q, Han Y, Zhang M, Wang W, Zhang J

pubmed logopapersMay 22 2025
Current brain tumor segmentation methods often utilize a U-Net architecture based on efficient convolutional neural networks. While effective, these architectures primarily model local dependencies, lacking the ability to capture global interactions like pure Transformer. However, using pure Transformer directly causes the network to lose local feature information. To address this limitation, we propose the Generative Adversarial Dilated Attention Convolutional Transformer(GDacFormer). GDacFormer enhances interactions between tumor regions while balancing global and local information through the integration of adversarial learning with an improved transformer module. Specifically, GDacFormer leverages a generative adversarial segmentation network to learn richer and more detailed features. It integrates a novel Transformer module, DacFormer, featuring multi-scale dilated attention and a next convolution block. This module, embedded within the generator, aggregates semantic multi-scale information, efficiently reduces the redundancy in the self-attention mechanism, and enhances local feature representations, thus refining the brain tumor segmentation results. GDacFormer achieves Dice values for whole tumor, core tumor, and enhancing tumor segmentation of 90.9%/90.8%/93.7%, 84.6%/85.7%/93.5%, and 77.9%/79.3%/86.3% on BraTS2019-2021 datasets. Extensive evaluations demonstrate the effectiveness and competitiveness of GDacFormer. The code for GDacFormer will be made publicly available at https://github.com/MuqinZ/GDacFormer.

SAMba-UNet: Synergizing SAM2 and Mamba in UNet with Heterogeneous Aggregation for Cardiac MRI Segmentation

Guohao Huo, Ruiting Dai, Hao Tang

arxiv logopreprintMay 22 2025
To address the challenge of complex pathological feature extraction in automated cardiac MRI segmentation, this study proposes an innovative dual-encoder architecture named SAMba-UNet. The framework achieves cross-modal feature collaborative learning by integrating the vision foundation model SAM2, the state-space model Mamba, and the classical UNet. To mitigate domain discrepancies between medical and natural images, a Dynamic Feature Fusion Refiner is designed, which enhances small lesion feature extraction through multi-scale pooling and a dual-path calibration mechanism across channel and spatial dimensions. Furthermore, a Heterogeneous Omni-Attention Convergence Module (HOACM) is introduced, combining global contextual attention with branch-selective emphasis mechanisms to effectively fuse SAM2's local positional semantics and Mamba's long-range dependency modeling capabilities. Experiments on the ACDC cardiac MRI dataset demonstrate that the proposed model achieves a Dice coefficient of 0.9103 and an HD95 boundary error of 1.0859 mm, significantly outperforming existing methods, particularly in boundary localization for complex pathological structures such as right ventricular anomalies. This work provides an efficient and reliable solution for automated cardiac disease diagnosis, and the code will be open-sourced.

SAMA-UNet: Enhancing Medical Image Segmentation with Self-Adaptive Mamba-Like Attention and Causal-Resonance Learning

Saqib Qamar, Mohd Fazil, Parvez Ahmad, Ghulam Muhammad

arxiv logopreprintMay 21 2025
Medical image segmentation plays an important role in various clinical applications, but existing models often struggle with the computational inefficiencies and challenges posed by complex medical data. State Space Sequence Models (SSMs) have demonstrated promise in modeling long-range dependencies with linear computational complexity, yet their application in medical image segmentation remains hindered by incompatibilities with image tokens and autoregressive assumptions. Moreover, it is difficult to achieve a balance in capturing both local fine-grained information and global semantic dependencies. To address these challenges, we introduce SAMA-UNet, a novel architecture for medical image segmentation. A key innovation is the Self-Adaptive Mamba-like Aggregated Attention (SAMA) block, which integrates contextual self-attention with dynamic weight modulation to prioritise the most relevant features based on local and global contexts. This approach reduces computational complexity and improves the representation of complex image features across multiple scales. We also suggest the Causal-Resonance Multi-Scale Module (CR-MSM), which enhances the flow of information between the encoder and decoder by using causal resonance learning. This mechanism allows the model to automatically adjust feature resolution and causal dependencies across scales, leading to better semantic alignment between the low-level and high-level features in U-shaped architectures. Experiments on MRI, CT, and endoscopy images show that SAMA-UNet performs better in segmentation accuracy than current methods using CNN, Transformer, and Mamba. The implementation is publicly available at GitHub.

X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography

Yifan Liu, Wuyang Li, Weihao Yu, Chenxin Li, Alexandre Alahi, Max Meng, Yixuan Yuan

arxiv logopreprintMay 21 2025
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture and inflexible volume representation. In this work, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT volumes from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode sparse-view X-ray inputs, where tokens from different views are integrated efficiently. Then, these tokens are decoded into a novel volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. This combination of a high-capacity model and flexible volume representation, empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Our codes are available at: https://github.com/CUHK-AIM-Group/X-GRM.

Exchange of Quantitative Computed Tomography Assessed Body Composition Data Using Fast Healthcare Interoperability Resources as a Necessary Step Toward Interoperable Integration of Opportunistic Screening Into Clinical Practice: Methodological Development Study.

Wen Y, Choo VY, Eil JH, Thun S, Pinto Dos Santos D, Kast J, Sigle S, Prokosch HU, Ovelgönne DL, Borys K, Kohnke J, Arzideh K, Winnekens P, Baldini G, Schmidt CS, Haubold J, Nensa F, Pelka O, Hosch R

pubmed logopapersMay 21 2025
Fast Healthcare Interoperability Resources (FHIR) is a widely used standard for storing and exchanging health care data. At the same time, image-based artificial intelligence (AI) models for quantifying relevant body structures and organs from routine computed tomography (CT)/magnetic resonance imaging scans have emerged. The missing link, simultaneously a needed step in advancing personalized medicine, is the incorporation of measurements delivered by AI models into an interoperable and standardized format. Incorporating image-based measurements and biomarkers into FHIR profiles can standardize data exchange, enabling timely, personalized treatment decisions and improving the precision and efficiency of patient care. This study aims to present the synergistic incorporation of CT-derived body organ and composition measurements with FHIR, delineating an initial paradigm for storing image-based biomarkers. This study integrated the results of the Body and Organ Analysis (BOA) model into FHIR profiles to enhance the interoperability of image-based biomarkers in radiology. The BOA model was selected as an exemplary AI model due to its ability to provide detailed body composition and organ measurements from CT scans. The FHIR profiles were developed based on 2 primary observation types: Body Composition Analysis (BCA Observation) for quantitative body composition metrics and Body Structure Observation for organ measurements. These profiles were structured to interoperate with a specially designed Diagnostic Report profile, which references the associated Imaging Study, ensuring a standardized linkage between image data and derived biomarkers. To ensure interoperability, all labels were mapped to SNOMED CT (Systematized Nomenclature of Medicine - Clinical Terms) or RadLex terminologies using specific value sets. The profiles were developed using FHIR Shorthand (FSH) and SUSHI, enabling efficient definition and implementation guide generation, ensuring consistency and maintainability. In this study, 4 BOA profiles, namely, Body Composition Analysis Observation, Body Structure Volume Observation, Diagnostic Report, and Imaging Study, have been presented. These FHIR profiles, which cover 104 anatomical landmarks, 8 body regions, and 8 tissues, enable the interoperable usage of the results of AI segmentation models, providing a direct link between image studies, series, and measurements. The BOA profiles provide a foundational framework for integrating AI-derived imaging biomarkers into FHIR, bridging the gap between advanced imaging analytics and standardized health care data exchange. By enabling structured, interoperable representation of body composition and organ measurements, these profiles facilitate seamless integration into clinical and research workflows, supporting improved data accessibility and interoperability. Their adaptability allows for extension to other imaging modalities and AI models, fostering a more standardized and scalable approach to using imaging biomarkers in precision medicine. This work represents a step toward enhancing the integration of AI-driven insights into digital health ecosystems, ultimately contributing to more data-driven, personalized, and efficient patient care.

ÆMMamba: An Efficient Medical Segmentation Model With Edge Enhancement.

Dong X, Zhou B, Yin C, Liao IY, Jin Z, Xu Z, Pu B

pubmed logopapersMay 21 2025
Medical image segmentation is critical for disease diagnosis, treatment planning, and prognosis assessment, yet the complexity and diversity of medical images pose significant challenges to accurate segmentation. While Convolutional Neural Networks capture local features and Vision Transformers excel in the global context, both struggle with efficient long-range dependency modeling. Inspired by Mamba's State Space Modeling efficiency, we propose ÆMMamba, a novel multi-scale feature extraction framework built on the Mamba backbone network. AÆMMamba integrates several innovative modules: the Efficient Fusion Bridge (EFB) module, which employs a bidirectional state-space model and attention mechanisms to fuse multi-scale features; the Edge-Aware Module (EAM), which enhances low-level edge representation using Sobel-based edge extraction; and the Boundary Sensitive Decoder (BSD), which leverages inverse attention and residual convolutional layers to handle cross-level complex boundaries. ÆMMamba achieves state-of-the-art performance across 8 medical segmentation datasets. On polyp segmentation datasets (Kvasir, ClinicDB, ColonDB, EndoScene, ETIS), it records the highest mDice and mIoU scores, outperforming methods like MADGNet and Swin-UMamba, with a standout mDice of 72.22 on ETIS, the most challenging dataset in this domain. For lung and breast segmentation, ÆMMamba surpasses competitors such as H2Former and SwinUnet, achieving Dice scores of 84.24 on BUSI and 79.83 on COVID-19 Lung. And on the LGG brain MRI dataset, ÆMMamba attains an mDice of 87.25 and an mIoU of 79.31, outperforming all compared methods. The source code will be released at https://github.com/xingbod/eMMamba.

Lung Nodule-SSM: Self-Supervised Lung Nodule Detection and Classification in Thoracic CT Images

Muniba Noreen, Furqan Shaukat

arxiv logopreprintMay 21 2025
Lung cancer remains among the deadliest types of cancer in recent decades, and early lung nodule detection is crucial for improving patient outcomes. The limited availability of annotated medical imaging data remains a bottleneck in developing accurate computer-aided diagnosis (CAD) systems. Self-supervised learning can help leverage large amounts of unlabeled data to develop more robust CAD systems. With the recent advent of transformer-based architecture and their ability to generalize to unseen tasks, there has been an effort within the healthcare community to adapt them to various medical downstream tasks. Thus, we propose a novel "LungNodule-SSM" method, which utilizes selfsupervised learning with DINOv2 as a backbone to enhance lung nodule detection and classification without annotated data. Our methodology has two stages: firstly, the DINOv2 model is pre-trained on unlabeled CT scans to learn robust feature representations, then secondly, these features are fine-tuned using transformer-based architectures for lesionlevel detection and accurate lung nodule diagnosis. The proposed method has been evaluated on the challenging LUNA 16 dataset, consisting of 888 CT scans, and compared with SOTA methods. Our experimental results show the superiority of our proposed method with an accuracy of 98.37%, explaining its effectiveness in lung nodule detection. The source code, datasets, and pre-processed data can be accessed using the link:https://github.com/EMeRALDsNRPU/Lung-Nodule-SSM-Self-Supervised-Lung-Nodule-Detection-and-Classification/tree/main

X-GRM: Large Gaussian Reconstruction Model for Sparse-view X-rays to Computed Tomography

Yifan Liu, Wuyang Li, Weihao Yu, Chenxin Li, Alexandre Alahi, Max Meng, Yixuan Yuan

arxiv logopreprintMay 21 2025
Computed Tomography serves as an indispensable tool in clinical workflows, providing non-invasive visualization of internal anatomical structures. Existing CT reconstruction works are limited to small-capacity model architecture, inflexible volume representation, and small-scale training data. In this paper, we present X-GRM (X-ray Gaussian Reconstruction Model), a large feedforward model for reconstructing 3D CT from sparse-view 2D X-ray projections. X-GRM employs a scalable transformer-based architecture to encode an arbitrary number of sparse X-ray inputs, where tokens from different views are integrated efficiently. Then, tokens are decoded into a new volume representation, named Voxel-based Gaussian Splatting (VoxGS), which enables efficient CT volume extraction and differentiable X-ray rendering. To support the training of X-GRM, we collect ReconX-15K, a large-scale CT reconstruction dataset containing around 15,000 CT/X-ray pairs across diverse organs, including the chest, abdomen, pelvis, and tooth etc. This combination of a high-capacity model, flexible volume representation, and large-scale training data empowers our model to produce high-quality reconstructions from various testing inputs, including in-domain and out-domain X-ray projections. Project Page: https://github.com/CUHK-AIM-Group/X-GRM.

Benchmarking Chest X-ray Diagnosis Models Across Multinational Datasets

Qinmei Xu, Yiheng Li, Xianghao Zhan, Ahmet Gorkem Er, Brittany Dashevsky, Chuanjun Xu, Mohammed Alawad, Mengya Yang, Liu Ya, Changsheng Zhou, Xiao Li, Haruka Itakura, Olivier Gevaert

arxiv logopreprintMay 21 2025
Foundation models leveraging vision-language pretraining have shown promise in chest X-ray (CXR) interpretation, yet their real-world performance across diverse populations and diagnostic tasks remains insufficiently evaluated. This study benchmarks the diagnostic performance and generalizability of foundation models versus traditional convolutional neural networks (CNNs) on multinational CXR datasets. We evaluated eight CXR diagnostic models - five vision-language foundation models and three CNN-based architectures - across 37 standardized classification tasks using six public datasets from the USA, Spain, India, and Vietnam, and three private datasets from hospitals in China. Performance was assessed using AUROC, AUPRC, and other metrics across both shared and dataset-specific tasks. Foundation models outperformed CNNs in both accuracy and task coverage. MAVL, a model incorporating knowledge-enhanced prompts and structured supervision, achieved the highest performance on public (mean AUROC: 0.82; AUPRC: 0.32) and private (mean AUROC: 0.95; AUPRC: 0.89) datasets, ranking first in 14 of 37 public and 3 of 4 private tasks. All models showed reduced performance on pediatric cases, with average AUROC dropping from 0.88 +/- 0.18 in adults to 0.57 +/- 0.29 in children (p = 0.0202). These findings highlight the value of structured supervision and prompt design in radiologic AI and suggest future directions including geographic expansion and ensemble modeling for clinical deployment. Code for all evaluated models is available at https://drive.google.com/drive/folders/1B99yMQm7bB4h1sVMIBja0RfUu8gLktCE
Page 17 of 22215 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.