Sort by:
Page 169 of 3973969 results

SimCortex: Collision-free Simultaneous Cortical Surfaces Reconstruction

Kaveh Moradkhani, R Jarrett Rushmore, Sylvain Bouix

arxiv logopreprintJul 9 2025
Accurate cortical surface reconstruction from magnetic resonance imaging (MRI) data is crucial for reliable neuroanatomical analyses. Current methods have to contend with complex cortical geometries, strict topological requirements, and often produce surfaces with overlaps, self-intersections, and topological defects. To overcome these shortcomings, we introduce SimCortex, a deep learning framework that simultaneously reconstructs all brain surfaces (left/right white-matter and pial) from T1-weighted(T1w) MRI volumes while preserving topological properties. Our method first segments the T1w image into a nine-class tissue label map. From these segmentations, we generate subject-specific, collision-free initial surface meshes. These surfaces serve as precise initializations for subsequent multiscale diffeomorphic deformations. Employing stationary velocity fields (SVFs) integrated via scaling-and-squaring, our approach ensures smooth, topology-preserving transformations with significantly reduced surface collisions and self-intersections. Evaluations on standard datasets demonstrate that SimCortex dramatically reduces surface overlaps and self-intersections, surpassing current methods while maintaining state-of-the-art geometric accuracy.

Deep Brain Net: An Optimized Deep Learning Model for Brain tumor Detection in MRI Images Using EfficientNetB0 and ResNet50 with Transfer Learning

Daniel Onah, Ravish Desai

arxiv logopreprintJul 9 2025
In recent years, deep learning has shown great promise in the automated detection and classification of brain tumors from MRI images. However, achieving high accuracy and computational efficiency remains a challenge. In this research, we propose Deep Brain Net, a novel deep learning system designed to optimize performance in the detection of brain tumors. The model integrates the strengths of two advanced neural network architectures which are EfficientNetB0 and ResNet50, combined with transfer learning to improve generalization and reduce training time. The EfficientNetB0 architecture enhances model efficiency by utilizing mobile inverted bottleneck blocks, which incorporate depth wise separable convolutions. This design significantly reduces the number of parameters and computational cost while preserving the ability of models to learn complex feature representations. The ResNet50 architecture, pre trained on large scale datasets like ImageNet, is fine tuned for brain tumor classification. Its use of residual connections allows for training deeper networks by mitigating the vanishing gradient problem and avoiding performance degradation. The integration of these components ensures that the proposed system is both computationally efficient and highly accurate. Extensive experiments performed on publicly available MRI datasets demonstrate that Deep Brain Net consistently outperforms existing state of the art methods in terms of classification accuracy, precision, recall, and computational efficiency. The result is an accuracy of 88 percent, a weighted F1 score of 88.75 percent, and a macro AUC ROC score of 98.17 percent which demonstrates the robustness and clinical potential of Deep Brain Net in assisting radiologists with brain tumor diagnosis.

MCA-RG: Enhancing LLMs with Medical Concept Alignment for Radiology Report Generation

Qilong Xing, Zikai Song, Youjia Zhang, Na Feng, Junqing Yu, Wei Yang

arxiv logopreprintJul 9 2025
Despite significant advancements in adapting Large Language Models (LLMs) for radiology report generation (RRG), clinical adoption remains challenging due to difficulties in accurately mapping pathological and anatomical features to their corresponding text descriptions. Additionally, semantic agnostic feature extraction further hampers the generation of accurate diagnostic reports. To address these challenges, we introduce Medical Concept Aligned Radiology Report Generation (MCA-RG), a knowledge-driven framework that explicitly aligns visual features with distinct medical concepts to enhance the report generation process. MCA-RG utilizes two curated concept banks: a pathology bank containing lesion-related knowledge, and an anatomy bank with anatomical descriptions. The visual features are aligned with these medical concepts and undergo tailored enhancement. We further propose an anatomy-based contrastive learning procedure to improve the generalization of anatomical features, coupled with a matching loss for pathological features to prioritize clinically relevant regions. Additionally, a feature gating mechanism is employed to filter out low-quality concept features. Finally, the visual features are corresponding to individual medical concepts, and are leveraged to guide the report generation process. Experiments on two public benchmarks (MIMIC-CXR and CheXpert Plus) demonstrate that MCA-RG achieves superior performance, highlighting its effectiveness in radiology report generation.

Dataset and Benchmark for Enhancing Critical Retained Foreign Object Detection

Yuli Wang, Victoria R. Shi, Liwei Zhou, Richard Chin, Yuwei Dai, Yuanyun Hu, Cheng-Yi Li, Haoyue Guan, Jiashu Cheng, Yu Sun, Cheng Ting Lin, Ihab Kamel, Premal Trivedi, Pamela Johnson, John Eng, Harrison Bai

arxiv logopreprintJul 9 2025
Critical retained foreign objects (RFOs), including surgical instruments like sponges and needles, pose serious patient safety risks and carry significant financial and legal implications for healthcare institutions. Detecting critical RFOs using artificial intelligence remains challenging due to their rarity and the limited availability of chest X-ray datasets that specifically feature critical RFOs cases. Existing datasets only contain non-critical RFOs, like necklace or zipper, further limiting their utility for developing clinically impactful detection algorithms. To address these limitations, we introduce "Hopkins RFOs Bench", the first and largest dataset of its kind, containing 144 chest X-ray images of critical RFO cases collected over 18 years from the Johns Hopkins Health System. Using this dataset, we benchmark several state-of-the-art object detection models, highlighting the need for enhanced detection methodologies for critical RFO cases. Recognizing data scarcity challenges, we further explore image synthetic methods to bridge this gap. We evaluate two advanced synthetic image methods, DeepDRR-RFO, a physics-based method, and RoentGen-RFO, a diffusion-based method, for creating realistic radiographs featuring critical RFOs. Our comprehensive analysis identifies the strengths and limitations of each synthetic method, providing insights into effectively utilizing synthetic data to enhance model training. The Hopkins RFOs Bench and our findings significantly advance the development of reliable, generalizable AI-driven solutions for detecting critical RFOs in clinical chest X-rays.

Speckle2Self: Self-Supervised Ultrasound Speckle Reduction Without Clean Data

Xuesong Li, Nassir Navab, Zhongliang Jiang

arxiv logopreprintJul 9 2025
Image denoising is a fundamental task in computer vision, particularly in medical ultrasound (US) imaging, where speckle noise significantly degrades image quality. Although recent advancements in deep neural networks have led to substantial improvements in denoising for natural images, these methods cannot be directly applied to US speckle noise, as it is not purely random. Instead, US speckle arises from complex wave interference within the body microstructure, making it tissue-dependent. This dependency means that obtaining two independent noisy observations of the same scene, as required by pioneering Noise2Noise, is not feasible. Additionally, blind-spot networks also cannot handle US speckle noise due to its high spatial dependency. To address this challenge, we introduce Speckle2Self, a novel self-supervised algorithm for speckle reduction using only single noisy observations. The key insight is that applying a multi-scale perturbation (MSP) operation introduces tissue-dependent variations in the speckle pattern across different scales, while preserving the shared anatomical structure. This enables effective speckle suppression by modeling the clean image as a low-rank signal and isolating the sparse noise component. To demonstrate its effectiveness, Speckle2Self is comprehensively compared with conventional filter-based denoising algorithms and SOTA learning-based methods, using both realistic simulated US images and human carotid US images. Additionally, data from multiple US machines are employed to evaluate model generalization and adaptability to images from unseen domains. \textit{Code and datasets will be released upon acceptance.

Steps Adaptive Decay DPSGD: Enhancing Performance on Imbalanced Datasets with Differential Privacy with HAM10000

Xiaobo Huang, Fang Xie

arxiv logopreprintJul 9 2025
When applying machine learning to medical image classification, data leakage is a critical issue. Previous methods, such as adding noise to gradients for differential privacy, work well on large datasets like MNIST and CIFAR-100, but fail on small, imbalanced medical datasets like HAM10000. This is because the imbalanced distribution causes gradients from minority classes to be clipped and lose crucial information, while majority classes dominate. This leads the model to fall into suboptimal solutions early. To address this, we propose SAD-DPSGD, which uses a linear decaying mechanism for noise and clipping thresholds. By allocating more privacy budget and using higher clipping thresholds in the initial training phases, the model avoids suboptimal solutions and enhances performance. Experiments show that SAD-DPSGD outperforms Auto-DPSGD on HAM10000, improving accuracy by 2.15% under $\epsilon = 3.0$ , $\delta = 10^{-3}$.

Airway Segmentation Network for Enhanced Tubular Feature Extraction

Qibiao Wu, Yagang Wang, Qian Zhang

arxiv logopreprintJul 9 2025
Manual annotation of airway regions in computed tomography images is a time-consuming and expertise-dependent task. Automatic airway segmentation is therefore a prerequisite for enabling rapid bronchoscopic navigation and the clinical deployment of bronchoscopic robotic systems. Although convolutional neural network methods have gained considerable attention in airway segmentation, the unique tree-like structure of airways poses challenges for conventional and deformable convolutions, which often fail to focus on fine airway structures, leading to missed segments and discontinuities. To address this issue, this study proposes a novel tubular feature extraction network, named TfeNet. TfeNet introduces a novel direction-aware convolution operation that first applies spatial rotation transformations to adjust the sampling positions of linear convolution kernels. The deformed kernels are then represented as line segments or polylines in 3D space. Furthermore, a tubular feature fusion module (TFFM) is designed based on asymmetric convolution and residual connection strategies, enhancing the network's focus on subtle airway structures. Extensive experiments conducted on one public dataset and two datasets used in airway segmentation challenges demonstrate that the proposed TfeNet achieves more accuracy and continuous airway structure predictions compared with existing methods. In particular, TfeNet achieves the highest overall score of 94.95% on the current largest airway segmentation dataset, Airway Tree Modeling(ATM22), and demonstrates advanced performance on the lung fibrosis dataset(AIIB23). The code is available at https://github.com/QibiaoWu/TfeNet.

Label-Efficient Chest X-ray Diagnosis via Partial CLIP Adaptation

Heet Nitinkumar Dalsania

arxiv logopreprintJul 9 2025
Modern deep learning implementations for medical imaging usually rely on large labeled datasets. These datasets are often difficult to obtain due to privacy concerns, high costs, and even scarcity of cases. In this paper, a label-efficient strategy is proposed for chest X-ray diagnosis that seeks to reflect real-world hospital scenarios. The experiments use the NIH Chest X-ray14 dataset and a pre-trained CLIP ViT-B/32 model. The model is adapted via partial fine-tuning of its visual encoder and then evaluated using zero-shot and few-shot learning with 1-16 labeled examples per disease class. The tests demonstrate that CLIP's pre-trained vision-language features can be effectively adapted to few-shot medical imaging tasks, achieving over 20\% improvement in mean AUC score as compared to the zero-shot baseline. The key aspect of this work is to attempt to simulate internal hospital workflows, where image archives exist but annotations are sparse. This work evaluates a practical and scalable solution for both common and rare disease diagnosis. Additionally this research is intended for academic and experimental purposes only and has not been peer reviewed yet. All code is found at https://github.com/heet007-code/CLIP-disease-xray.

Automated Detection of Focal Bone Marrow Lesions From MRI: A Multi-center Feasibility Study in Patients with Monoclonal Plasma Cell Disorders.

Wennmann M, Kächele J, von Salomon A, Nonnenmacher T, Bujotzek M, Xiao S, Martinez Mora A, Hielscher T, Hajiyianni M, Menis E, Grözinger M, Bauer F, Riebl V, Rotkopf LT, Zhang KS, Afat S, Besemer B, Hoffmann M, Ringelstein A, Graeven U, Fedders D, Hänel M, Antoch G, Fenk R, Mahnken AH, Mann C, Mokry T, Raab MS, Weinhold N, Mai EK, Goldschmidt H, Weber TF, Delorme S, Neher P, Schlemmer HP, Maier-Hein K

pubmed logopapersJul 9 2025
To train and test an AI-based algorithm for automated detection of focal bone marrow lesions (FL) from MRI. This retrospective feasibility study included 444 patients with monoclonal plasma cell disorders. For this feasibility study, only FLs in the left pelvis were included. Using the nnDetection framework, the algorithm was trained based on 334 patients with 494 FLs from center 1, and was tested on an internal test set (36 patients, 89 FLs, center 1) and a multicentric external test set (74 patients, 262 FLs, centers 2-11). Mean average precision (mAP), F1-score, sensitivity, positive predictive value (PPV), and Spearman correlation coefficient between automatically determined and actual number of FLs were calculated. On the internal/external test set, the algorithm achieved a mAP of 0.44/0.34, F1-Score of 0.54/0.44, sensitivity of 0.49/0.34, and a PPV of 0.61/0.61, respectively. In two subsets of the external multicentric test set with high imaging quality, the performance nearly matched that of the internal test set, with mAP of 0.45/0.41, F1-Score of 0.50/0.53, sensitivity of 0.44/0.43, and a PPV of 0.60/0.71, respectively. There was a significant correlation between the automatically determined and actual number of FLs on both the internal (r=0.51, p=0.001) and external multicentric test set (r=0.59, p<0.001). This study demonstrates that the automated detection of FLs from MRI, and thereby the automated assessment of the number of FLs, is feasible.

Altered hemispheric lateralization of cortico-basal ganglia-thalamic network associated with gene expression and neurotransmitter profiles as potential biomarkers for panic disorder.

Han Y, Yan H, Shan X, Li H, Liu F, Li P, Yuan Y, Lv D, Guo W

pubmed logopapersJul 9 2025
Functional brain lateralization, a key feature of the human brain that shows alterations in various mental disorders, remains poorly understood in panic disorder (PD), and its investigation may provide valuable insights into the neurobiological underpinnings of psychiatric conditions. This study investigates hemispheric lateralization in drug-naive patients with PD before and after treatment, explores its associations with gene expression and neurotransmitter profiles, and examines its utility for diagnosis and treatment outcome prediction. Fifty-eight patients and 85 healthy controls (HCs) were enrolled. Clinical assessments and resting-state functional magnetic resonance imaging scans were conducted before and after a 4-week paroxetine monotherapy. Intra-hemispheric functional connectivity strength (FCS), inter-hemispheric FCS, and parameter of asymmetry (PAS) were calculated. Imaging-transcriptomic and imaging-neurotransmitter correlation analyses were conducted. PAS was used in machine learning models for classification and treatment outcome prediction. Compared with HCs, patients exhibited enhanced intra-hemispheric FCS and decreased PAS in the caudate nucleus/pallidum and thalamus, with associated genes, dopamine and serotonin receptor densities, and vesicular acetylcholine transporter densities linking these lateralization alterations to neural signaling and synaptic function. FCS and PAS results were consistent across different correlation thresholds (0.15, 0.2, and 0.25). No significant changes in FCS or PAS were observed following treatment. PAS demonstrated excellent performance in classification (accuracy = 75.52 %) and treatment outcomes prediction (r = 0.763). Hemispheric lateralization in the cortico-basal ganglia-thalamic network was significantly altered in patients with PD, with these changes linked to disruptions in genes and neurotransmitter profiles which are associated with neural signal transduction and synaptic function. PAS shows promise as a biomarker for PD diagnosis and treatment outcome prediction.
Page 169 of 3973969 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.