Sort by:
Page 16 of 54537 results

Ultrasound Phase Aberrated Point Spread Function Estimation with Convolutional Neural Network: Simulation Study.

Shen WH, Lin YA, Li ML

pubmed logopapersAug 13 2025
Ultrasound imaging systems rely on accurate point spread function (PSF) estimation to support advanced image quality enhancement techniques such as deconvolution and speckle reduction. Phase aberration, caused by sound speed inhomogeneity within biological tissue, is inevitable in ultrasound imaging. It distorts the PSF by increasing sidelobe level and introducing asymmetric amplitude, making PSF estimation under phase aberration highly challenging. In this work, we propose a deep learning framework for estimating phase-aberrated PSFs using U-Net and complex U-Net architectures, operating on RF and complex k-space data, respectively, with the latter demonstrating superior performance. Synthetic phase aberration data, generated using the near-field phase screen model, is employed to train the networks. We evaluate various loss functions and find that log-compressed B-mode perceptual loss achieves the best performance, accurately predicting both the mainlobe and near sidelobe regions of the PSF. Simulation results validate the effectiveness of our approach in estimating PSFs under varying levels of phase aberration. Furthermore, we demonstrate that more accurate PSF estimation improves performance in a downstream phase aberration correction task, highlighting the broader utility of the proposed method.

AST-n: A Fast Sampling Approach for Low-Dose CT Reconstruction using Diffusion Models

Tomás de la Sotta, José M. Saavedra, Héctor Henríquez, Violeta Chang, Aline Xavier

arxiv logopreprintAug 13 2025
Low-dose CT (LDCT) protocols reduce radiation exposure but increase image noise, compromising diagnostic confidence. Diffusion-based generative models have shown promise for LDCT denoising by learning image priors and performing iterative refinement. In this work, we introduce AST-n, an accelerated inference framework that initiates reverse diffusion from intermediate noise levels, and integrate high-order ODE solvers within conditioned models to further reduce sampling steps. We evaluate two acceleration paradigms--AST-n sampling and standard scheduling with high-order solvers -- on the Low Dose CT Grand Challenge dataset, covering head, abdominal, and chest scans at 10-25 % of standard dose. Conditioned models using only 25 steps (AST-25) achieve peak signal-to-noise ratio (PSNR) above 38 dB and structural similarity index (SSIM) above 0.95, closely matching standard baselines while cutting inference time from ~16 seg to under 1 seg per slice. Unconditional sampling suffers substantial quality loss, underscoring the necessity of conditioning. We also assess DDIM inversion, which yields marginal PSNR gains at the cost of doubling inference time, limiting its clinical practicality. Our results demonstrate that AST-n with high-order samplers enables rapid LDCT reconstruction without significant loss of image fidelity, advancing the feasibility of diffusion-based methods in clinical workflows.

MInDI-3D: Iterative Deep Learning in 3D for Sparse-view Cone Beam Computed Tomography

Daniel Barco, Marc Stadelmann, Martin Oswald, Ivo Herzig, Lukas Lichtensteiger, Pascal Paysan, Igor Peterlik, Michal Walczak, Bjoern Menze, Frank-Peter Schilling

arxiv logopreprintAug 13 2025
We present MInDI-3D (Medical Inversion by Direct Iteration in 3D), the first 3D conditional diffusion-based model for real-world sparse-view Cone Beam Computed Tomography (CBCT) artefact removal, aiming to reduce imaging radiation exposure. A key contribution is extending the "InDI" concept from 2D to a full 3D volumetric approach for medical images, implementing an iterative denoising process that refines the CBCT volume directly from sparse-view input. A further contribution is the generation of a large pseudo-CBCT dataset (16,182) from chest CT volumes of the CT-RATE public dataset to robustly train MInDI-3D. We performed a comprehensive evaluation, including quantitative metrics, scalability analysis, generalisation tests, and a clinical assessment by 11 clinicians. Our results show MInDI-3D's effectiveness, achieving a 12.96 (6.10) dB PSNR gain over uncorrected scans with only 50 projections on the CT-RATE pseudo-CBCT (independent real-world) test set and enabling an 8x reduction in imaging radiation exposure. We demonstrate its scalability by showing that performance improves with more training data. Importantly, MInDI-3D matches the performance of a 3D U-Net on real-world scans from 16 cancer patients across distortion and task-based metrics. It also generalises to new CBCT scanner geometries. Clinicians rated our model as sufficient for patient positioning across all anatomical sites and found it preserved lung tumour boundaries well.

Switchable Deep Beamformer for High-quality and Real-time Passive Acoustic Mapping.

Zeng Y, Li J, Zhu H, Lu S, Li J, Cai X

pubmed logopapersAug 12 2025
Passive acoustic mapping (PAM) is a promising tool for monitoring acoustic cavitation activities in the applications of ultrasound therapy. Data-adaptive beamformers for PAM have better image quality compared with time exposure acoustics (TEA) algorithms. However, the computational cost of data-adaptive beamformers is considerably expensive. In this work, we develop a deep beamformer based on a generative adversarial network that can switch between different transducer arrays and reconstruct high-quality PAM images directly from radiofrequency ultrasound signals with low computational cost. The deep beamformer was trained on a dataset consisting of simulated and experimental cavitation signals of single and multiple microbubble clouds measured by different (linear and phased) arrays covering 1-15 MHz. We compared the performance of the deep beamformer to TEA and three different data-adaptive beamformers using simulated and experimental test dataset. Compared with TEA, the deep beamformer reduced the energy spread area by 27.3%-77.8% and improved the image signal-to-noise ratio by 13.9-25.1 dB on average for the different arrays in our data. Compared with the data-adaptive beamformers, the deep beamformer reduced the computational cost by three orders of magnitude achieving 10.5 ms image reconstruction speed in our data, while the image quality was as good as that of the data-adaptive beamformers. These results demonstrate the potential of the deep beamformer for high-resolution monitoring of microbubble cavitation activities for ultrasound therapy.

Shape Completion and Real-Time Visualization in Robotic Ultrasound Spine Acquisitions

Miruna-Alexandra Gafencu, Reem Shaban, Yordanka Velikova, Mohammad Farid Azampour, Nassir Navab

arxiv logopreprintAug 12 2025
Ultrasound (US) imaging is increasingly used in spinal procedures due to its real-time, radiation-free capabilities; however, its effectiveness is hindered by shadowing artifacts that obscure deeper tissue structures. Traditional approaches, such as CT-to-US registration, incorporate anatomical information from preoperative CT scans to guide interventions, but they are limited by complex registration requirements, differences in spine curvature, and the need for recent CT imaging. Recent shape completion methods can offer an alternative by reconstructing spinal structures in US data, while being pretrained on large set of publicly available CT scans. However, these approaches are typically offline and have limited reproducibility. In this work, we introduce a novel integrated system that combines robotic ultrasound with real-time shape completion to enhance spinal visualization. Our robotic platform autonomously acquires US sweeps of the lumbar spine, extracts vertebral surfaces from ultrasound, and reconstructs the complete anatomy using a deep learning-based shape completion network. This framework provides interactive, real-time visualization with the capability to autonomously repeat scans and can enable navigation to target locations. This can contribute to better consistency, reproducibility, and understanding of the underlying anatomy. We validate our approach through quantitative experiments assessing shape completion accuracy and evaluations of multiple spine acquisition protocols on a phantom setup. Additionally, we present qualitative results of the visualization on a volunteer scan.

MIND: A Noise-Adaptive Denoising Framework for Medical Images Integrating Multi-Scale Transformer

Tao Tang, Chengxu Yang

arxiv logopreprintAug 11 2025
The core role of medical images in disease diagnosis makes their quality directly affect the accuracy of clinical judgment. However, due to factors such as low-dose scanning, equipment limitations and imaging artifacts, medical images are often accompanied by non-uniform noise interference, which seriously affects structure recognition and lesion detection. This paper proposes a medical image adaptive denoising model (MI-ND) that integrates multi-scale convolutional and Transformer architecture, introduces a noise level estimator (NLE) and a noise adaptive attention module (NAAB), and realizes channel-spatial attention regulation and cross-modal feature fusion driven by noise perception. Systematic testing is carried out on multimodal public datasets. Experiments show that this method significantly outperforms the comparative methods in image quality indicators such as PSNR, SSIM, and LPIPS, and improves the F1 score and ROC-AUC in downstream diagnostic tasks, showing strong prac-tical value and promotional potential. The model has outstanding benefits in structural recovery, diagnostic sensitivity, and cross-modal robustness, and provides an effective solution for medical image enhancement and AI-assisted diagnosis and treatment.

Anatomy-Aware Low-Dose CT Denoising via Pretrained Vision Models and Semantic-Guided Contrastive Learning

Runze Wang, Zeli Chen, Zhiyun Song, Wei Fang, Jiajin Zhang, Danyang Tu, Yuxing Tang, Minfeng Xu, Xianghua Ye, Le Lu, Dakai Jin

arxiv logopreprintAug 11 2025
To reduce radiation exposure and improve the diagnostic efficacy of low-dose computed tomography (LDCT), numerous deep learning-based denoising methods have been developed to mitigate noise and artifacts. However, most of these approaches ignore the anatomical semantics of human tissues, which may potentially result in suboptimal denoising outcomes. To address this problem, we propose ALDEN, an anatomy-aware LDCT denoising method that integrates semantic features of pretrained vision models (PVMs) with adversarial and contrastive learning. Specifically, we introduce an anatomy-aware discriminator that dynamically fuses hierarchical semantic features from reference normal-dose CT (NDCT) via cross-attention mechanisms, enabling tissue-specific realism evaluation in the discriminator. In addition, we propose a semantic-guided contrastive learning module that enforces anatomical consistency by contrasting PVM-derived features from LDCT, denoised CT and NDCT, preserving tissue-specific patterns through positive pairs and suppressing artifacts via dual negative pairs. Extensive experiments conducted on two LDCT denoising datasets reveal that ALDEN achieves the state-of-the-art performance, offering superior anatomy preservation and substantially reducing over-smoothing issue of previous work. Further validation on a downstream multi-organ segmentation task (encompassing 117 anatomical structures) affirms the model's ability to maintain anatomical awareness.

MIND: A Noise-Adaptive Denoising Framework for Medical Images Integrating Multi-Scale Transformer

Tao Tang, Chengxu Yang

arxiv logopreprintAug 11 2025
The core role of medical images in disease diagnosis makes their quality directly affect the accuracy of clinical judgment. However, due to factors such as low-dose scanning, equipment limitations and imaging artifacts, medical images are often accompanied by non-uniform noise interference, which seriously affects structure recognition and lesion detection. This paper proposes a medical image adaptive denoising model (MI-ND) that integrates multi-scale convolutional and Transformer architecture, introduces a noise level estimator (NLE) and a noise adaptive attention module (NAAB), and realizes channel-spatial attention regulation and cross-modal feature fusion driven by noise perception. Systematic testing is carried out on multimodal public datasets. Experiments show that this method significantly outperforms the comparative methods in image quality indicators such as PSNR, SSIM, and LPIPS, and improves the F1 score and ROC-AUC in downstream diagnostic tasks, showing strong prac-tical value and promotional potential. The model has outstanding benefits in structural recovery, diagnostic sensitivity, and cross-modal robustness, and provides an effective solution for medical image enhancement and AI-assisted diagnosis and treatment.

PrIINeR: Towards Prior-Informed Implicit Neural Representations for Accelerated MRI

Ziad Al-Haj Hemidi, Eytan Kats, Mattias P. Heinrich

arxiv logopreprintAug 11 2025
Accelerating Magnetic Resonance Imaging (MRI) reduces scan time but often degrades image quality. While Implicit Neural Representations (INRs) show promise for MRI reconstruction, they struggle at high acceleration factors due to weak prior constraints, leading to structural loss and aliasing artefacts. To address this, we propose PrIINeR, an INR-based MRI reconstruction method that integrates prior knowledge from pre-trained deep learning models into the INR framework. By combining population-level knowledge with instance-based optimization and enforcing dual data consistency, PrIINeR aligns both with the acquired k-space data and the prior-informed reconstruction. Evaluated on the NYU fastMRI dataset, our method not only outperforms state-of-the-art INR-based approaches but also improves upon several learning-based state-of-the-art methods, significantly improving structural preservation and fidelity while effectively removing aliasing artefacts.PrIINeR bridges deep learning and INR-based techniques, offering a more reliable solution for high-quality, accelerated MRI reconstruction. The code is publicly available on https://github.com/multimodallearning/PrIINeR.

Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging: Challenges and Opportunities in Clinical PET Image Quantification.

Farag A, Mirshahvalad SA, Catana C, Veit-Haibach P

pubmed logopapersAug 11 2025
This clinically oriented review explores the technical advancements of simultaneous PET/magnetic resonance (MR) imaging to provide an overview of the addressed obstacles over time, current challenges, and future trends in the field. In particular, advanced attenuation and motion correction techniques and MR-guided PET reconstruction frameworks were reviewed, and the state-of-the-art PET/MR systems and their strengths were discussed. Overall, PET/MR holds great potential in various clinical applications, including oncology, neurology, and cardiology. However, it requires continued optimization in hardware, algorithms, and clinical protocols to achieve broader adoption and be included in the routine clinical standards.
Page 16 of 54537 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.