Sort by:
Page 16 of 81804 results

Anatomical Considerations for Achieving Optimized Outcomes in Individualized Cochlear Implantation.

Timm ME, Avallone E, Timm M, Salcher RB, Rudnik N, Lenarz T, Schurzig D

pubmed logopapersAug 1 2025
Machine learning models can assist with the selection of electrode arrays required for optimal insertion angles. Cochlea implantation is a successful therapy in patients with severe to profound hearing loss. The effectiveness of a cochlea implant depends on precise insertion and positioning of electrode array within the cochlea, which is known for its variability in shape and size. Preoperative imaging like CT or MRI plays a significant role in evaluating cochlear anatomy and planning the surgical approach to optimize outcomes. In this study, preoperative and postoperative CT and CBCT data of 558 cochlea-implant patients were analyzed in terms of the influence of anatomical factors and insertion depth onto the resulting insertion angle. Machine learning models can predict insertion depths needed for optimal insertion angles, with performance improving by including cochlear dimensions in the models. A simple linear regression using just the insertion depth explained 88% of variability, whereas adding cochlear length or diameter and width further improved predictions up to 94%.

DiSC-Med: Diffusion-based Semantic Communications for Robust Medical Image Transmission

Fupei Guo, Hao Zheng, Xiang Zhang, Li Chen, Yue Wang, Songyang Zhang

arxiv logopreprintJul 31 2025
The rapid development of artificial intelligence has driven smart health with next-generation wireless communication technologies, stimulating exciting applications in remote diagnosis and intervention. To enable a timely and effective response for remote healthcare, efficient transmission of medical data through noisy channels with limited bandwidth emerges as a critical challenge. In this work, we propose a novel diffusion-based semantic communication framework, namely DiSC-Med, for the medical image transmission, where medical-enhanced compression and denoising blocks are developed for bandwidth efficiency and robustness, respectively. Unlike conventional pixel-wise communication framework, our proposed DiSC-Med is able to capture the key semantic information and achieve superior reconstruction performance with ultra-high bandwidth efficiency against noisy channels. Extensive experiments on real-world medical datasets validate the effectiveness of our framework, demonstrating its potential for robust and efficient telehealth applications.

IHE-Net:Hidden feature discrepancy fusion and triple consistency training for semi-supervised medical image segmentation.

Ju M, Wang B, Zhao Z, Zhang S, Yang S, Wei Z

pubmed logopapersJul 31 2025
Teacher-Student (TS) networks have become the mainstream frameworks of semi-supervised deep learning, and are widely used in medical image segmentation. However, traditional TSs based on single or homogeneous encoders often struggle to capture the rich semantic details required for complex, fine-grained tasks. To address this, we propose a novel semi-supervised medical image segmentation framework (IHE-Net), which makes good use of the feature discrepancies of two heterogeneous encoders to improve segmentation performance. The two encoders are instantiated by different learning paradigm networks, namely CNN and Transformer/Mamba, respectively, to extract richer and more robust context representations from unlabeled data. On this basis, we propose a simple yet powerful multi-level feature discrepancy fusion module (MFDF), which effectively integrates different modal features and their discrepancies from two heterogeneous encoders. This design enhances the representational capacity of the model through efficient fusion without introducing additional computational overhead. Furthermore, we introduce a triple consistency learning strategy to improve predictive stability by setting dual decoders and adding mixed output consistency. Extensive experimental results on three skin lesion segmentation datasets, ISIC2017, ISIC2018, and PH2, demonstrate the superiority of our framework. Ablation studies further validate the rationale and effectiveness of the proposed method. Code is available at: https://github.com/joey-AI-medical-learning/IHE-Net.

The retina as a window into detecting subclinical cardiovascular disease in type 2 diabetes.

Alatrany AS, Lakhani K, Cowley AC, Yeo JL, Dattani A, Ayton SL, Deshpande A, Graham-Brown MPM, Davies MJ, Khunti K, Yates T, Sellers SL, Zhou H, Brady EM, Arnold JR, Deane J, McLean RJ, Proudlock FA, McCann GP, Gulsin GS

pubmed logopapersJul 31 2025
Individuals with Type 2 Diabetes (T2D) are at high risk of subclinical cardiovascular disease (CVD), potentially detectable through retinal alterations. In this single-centre, prospective cohort study, 255 asymptomatic adults with T2D and no prior history of CVD underwent echocardiography, non-contrast coronary computed tomography and cardiovascular magnetic resonance. Retinal photographs were evaluated for diabetic retinopathy grade and microvascular geometric characteristics using deep learning (DL) tools. Associations with cardiac imaging markers of subclinical CVD were explored. Of the participants (aged 64 ± 7 years, 62% males); 200 (78%) had no diabetic retinopathy and 55 (22%) had mild background retinopathy. Groups were well-matched for age, sex, ethnicity, CV risk factors, urine microalbuminuria, and serum natriuretic peptide and high-sensitivity troponin levels. Presence of retinopathy was associated with a greater burden of coronary atherosclerosis (coronary artery calcium score ≥ 100; OR 2.63; 95% CI 1.29–5.36; <i>P</i> = 0.008), more concentric left ventricular remodelling (OR 3.11; 95% CI 1.50–6.45; <i>P</i> = 0.002), and worse global longitudinal strain (OR 2.32; 95% CI 1.18–4.59; <i>P</i> = 0.015), independent of key co-variables. Early diabetic retinopathy is associated with a high burden of coronary atherosclerosis and markers of early heart failure. Routine diabetic eye screening may serve as an effective alternative to currently advocated screening tests for detecting subclinical CVD in T2D, presenting opportunities for earlier detection and intervention. The online version contains supplementary material available at 10.1038/s41598-025-13468-4.

Consistent Point Matching

Halid Ziya Yerebakan, Gerardo Hermosillo Valadez

arxiv logopreprintJul 31 2025
This study demonstrates that incorporating a consistency heuristic into the point-matching algorithm \cite{yerebakan2023hierarchical} improves robustness in matching anatomical locations across pairs of medical images. We validated our approach on diverse longitudinal internal and public datasets spanning CT and MRI modalities. Notably, it surpasses state-of-the-art results on the Deep Lesion Tracking dataset. Additionally, we show that the method effectively addresses landmark localization. The algorithm operates efficiently on standard CPU hardware and allows configurable trade-offs between speed and robustness. The method enables high-precision navigation between medical images without requiring a machine learning model or training data.

Topology Optimization in Medical Image Segmentation with Fast Euler Characteristic

Liu Li, Qiang Ma, Cheng Ouyang, Johannes C. Paetzold, Daniel Rueckert, Bernhard Kainz

arxiv logopreprintJul 31 2025
Deep learning-based medical image segmentation techniques have shown promising results when evaluated based on conventional metrics such as the Dice score or Intersection-over-Union. However, these fully automatic methods often fail to meet clinically acceptable accuracy, especially when topological constraints should be observed, e.g., continuous boundaries or closed surfaces. In medical image segmentation, the correctness of a segmentation in terms of the required topological genus sometimes is even more important than the pixel-wise accuracy. Existing topology-aware approaches commonly estimate and constrain the topological structure via the concept of persistent homology (PH). However, these methods are difficult to implement for high dimensional data due to their polynomial computational complexity. To overcome this problem, we propose a novel and fast approach for topology-aware segmentation based on the Euler Characteristic ($\chi$). First, we propose a fast formulation for $\chi$ computation in both 2D and 3D. The scalar $\chi$ error between the prediction and ground-truth serves as the topological evaluation metric. Then we estimate the spatial topology correctness of any segmentation network via a so-called topological violation map, i.e., a detailed map that highlights regions with $\chi$ errors. Finally, the segmentation results from the arbitrary network are refined based on the topological violation maps by a topology-aware correction network. Our experiments are conducted on both 2D and 3D datasets and show that our method can significantly improve topological correctness while preserving pixel-wise segmentation accuracy.

A Trust-Guided Approach to MR Image Reconstruction with Side Information.

Atalik A, Chopra S, Sodickson DK

pubmed logopapersJul 31 2025
Reducing MRI scan times can improve patient care and lower healthcare costs. Many acceleration methods are designed to reconstruct diagnostic-quality images from sparse k-space data, via an ill-posed or ill-conditioned linear inverse problem (LIP). To address the resulting ambiguities, it is crucial to incorporate prior knowledge into the optimization problem, e.g., in the form of regularization. Another form of prior knowledge less commonly used in medical imaging is the readily available auxiliary data (a.k.a. side information) obtained from sources other than the current acquisition. In this paper, we present the Trust-Guided Variational Network (TGVN), an end-to-end deep learning framework that effectively and reliably integrates side information into LIPs. We demonstrate its effectiveness in multi-coil, multi-contrast MRI reconstruction, where incomplete or low-SNR measurements from one contrast are used as side information to reconstruct high-quality images of another contrast from heavily under-sampled data. TGVN is robust across different contrasts, anatomies, and field strengths. Compared to baselines utilizing side information, TGVN achieves superior image quality while preserving subtle pathological features even at challenging acceleration levels, drastically speeding up acquisition while minimizing hallucinations. Source code and dataset splits are available on github.com/sodicksonlab/TGVN.

Out-of-Distribution Detection in Medical Imaging via Diffusion Trajectories

Lemar Abdi, Francisco Caetano, Amaan Valiuddin, Christiaan Viviers, Hamdi Joudeh, Fons van der Sommen

arxiv logopreprintJul 31 2025
In medical imaging, unsupervised out-of-distribution (OOD) detection offers an attractive approach for identifying pathological cases with extremely low incidence rates. In contrast to supervised methods, OOD-based approaches function without labels and are inherently robust to data imbalances. Current generative approaches often rely on likelihood estimation or reconstruction error, but these methods can be computationally expensive, unreliable, and require retraining if the inlier data changes. These limitations hinder their ability to distinguish nominal from anomalous inputs efficiently, consistently, and robustly. We propose a reconstruction-free OOD detection method that leverages the forward diffusion trajectories of a Stein score-based denoising diffusion model (SBDDM). By capturing trajectory curvature via the estimated Stein score, our approach enables accurate anomaly scoring with only five diffusion steps. A single SBDDM pre-trained on a large, semantically aligned medical dataset generalizes effectively across multiple Near-OOD and Far-OOD benchmarks, achieving state-of-the-art performance while drastically reducing computational cost during inference. Compared to existing methods, SBDDM achieves a relative improvement of up to 10.43% and 18.10% for Near-OOD and Far-OOD detection, making it a practical building block for real-time, reliable computer-aided diagnosis.

Topology Optimization in Medical Image Segmentation with Fast Euler Characteristic

Liu Li, Qiang Ma, Cheng Ouyang, Johannes C. Paetzold, Daniel Rueckert, Bernhard Kainz

arxiv logopreprintJul 31 2025
Deep learning-based medical image segmentation techniques have shown promising results when evaluated based on conventional metrics such as the Dice score or Intersection-over-Union. However, these fully automatic methods often fail to meet clinically acceptable accuracy, especially when topological constraints should be observed, e.g., continuous boundaries or closed surfaces. In medical image segmentation, the correctness of a segmentation in terms of the required topological genus sometimes is even more important than the pixel-wise accuracy. Existing topology-aware approaches commonly estimate and constrain the topological structure via the concept of persistent homology (PH). However, these methods are difficult to implement for high dimensional data due to their polynomial computational complexity. To overcome this problem, we propose a novel and fast approach for topology-aware segmentation based on the Euler Characteristic ($\chi$). First, we propose a fast formulation for $\chi$ computation in both 2D and 3D. The scalar $\chi$ error between the prediction and ground-truth serves as the topological evaluation metric. Then we estimate the spatial topology correctness of any segmentation network via a so-called topological violation map, i.e., a detailed map that highlights regions with $\chi$ errors. Finally, the segmentation results from the arbitrary network are refined based on the topological violation maps by a topology-aware correction network. Our experiments are conducted on both 2D and 3D datasets and show that our method can significantly improve topological correctness while preserving pixel-wise segmentation accuracy.

A privacy preserving machine learning framework for medical image analysis using quantized fully connected neural networks with TFHE based inference.

Selvakumar S, Senthilkumar B

pubmed logopapersJul 30 2025
Medical image analysis using deep learning algorithms has become a basis of modern healthcare, enabling early detection, diagnosis, treatment planning, and disease monitoring. However, sharing sensitive raw medical data with third parties for analysis raises significant privacy concerns. This paper presents a privacy-preserving machine learning (PPML) framework using a Fully Connected Neural Network (FCNN) for secure medical image analysis using the MedMNIST dataset. The proposed PPML framework leverages a torus-based fully homomorphic encryption (TFHE) to ensure data privacy during inference, maintain patient confidentiality, and ensure compliance with privacy regulations. The FCNN model is trained in a plaintext environment for FHE compatibility using Quantization-Aware Training to optimize weights and activations. The quantized FCNN model is then validated under FHE constraints through simulation and compiled into an FHE-compatible circuit for encrypted inference on sensitive data. The proposed framework is evaluated on the MedMNIST datasets to assess its accuracy and inference time in both plaintext and encrypted environments. Experimental results reveal that the PPML framework achieves a prediction accuracy of 88.2% in the plaintext setting and 87.5% during encrypted inference, with an average inference time of 150 milliseconds per image. This shows that FCNN models paired with TFHE-based encryption achieve high prediction accuracy on MedMNIST datasets with minimal performance degradation compared to unencrypted inference.
Page 16 of 81804 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.