Sort by:
Page 157 of 1701699 results

Recognizing artery segments on carotid ultrasonography using embedding concatenation of deep image and vision-language models.

Lo CM, Sung SF

pubmed logopapersMay 14 2025
Evaluating large artery atherosclerosis is critical for predicting and preventing ischemic strokes. Ultrasonographic assessment of the carotid arteries is the preferred first-line examination due to its ease of use, noninvasive, and absence of radiation exposure. This study proposed an automated classification model for the common carotid artery (CCA), carotid bulb, internal carotid artery (ICA), and external carotid artery (ECA) to enhance the quantification of carotid artery examinations.&#xD;Approach: A total of 2,943 B-mode ultrasound images (CCA: 1,563; bulb: 611; ICA: 476; ECA: 293) from 288 patients were collected. Three distinct sets of embedding features were extracted from artificial intelligence networks including pre-trained DenseNet201, vision Transformer (ViT), and echo contrastive language-image pre-training (EchoCLIP) models using deep learning architectures for pattern recognition. These features were then combined in a support vector machine (SVM) classifier to interpret the anatomical structures in B-mode images.&#xD;Main results: After ten-fold cross-validation, the model achieved an accuracy of 82.3%, which was significantly better than using individual feature sets, with a p-value of <0.001.&#xD;Significance: The proposed model could make carotid artery examinations more accurate and consistent with the achieved classification accuracy. The source code is available at https://github.com/buddykeywordw/Artery-Segments-Recognition&#xD.

Explainability Through Human-Centric Design for XAI in Lung Cancer Detection

Amy Rafferty, Rishi Ramaesh, Ajitha Rajan

arxiv logopreprintMay 14 2025
Deep learning models have shown promise in lung pathology detection from chest X-rays, but widespread clinical adoption remains limited due to opaque model decision-making. In prior work, we introduced ClinicXAI, a human-centric, expert-guided concept bottleneck model (CBM) designed for interpretable lung cancer diagnosis. We now extend that approach and present XpertXAI, a generalizable expert-driven model that preserves human-interpretable clinical concepts while scaling to detect multiple lung pathologies. Using a high-performing InceptionV3-based classifier and a public dataset of chest X-rays with radiology reports, we compare XpertXAI against leading post-hoc explainability methods and an unsupervised CBM, XCBs. We assess explanations through comparison with expert radiologist annotations and medical ground truth. Although XpertXAI is trained for multiple pathologies, our expert validation focuses on lung cancer. We find that existing techniques frequently fail to produce clinically meaningful explanations, omitting key diagnostic features and disagreeing with radiologist judgments. XpertXAI not only outperforms these baselines in predictive accuracy but also delivers concept-level explanations that better align with expert reasoning. While our focus remains on explainability in lung cancer detection, this work illustrates how human-centric model design can be effectively extended to broader diagnostic contexts - offering a scalable path toward clinically meaningful explainable AI in medical diagnostics.

Development and Validation of Ultrasound Hemodynamic-based Prediction Models for Acute Kidney Injury After Renal Transplantation.

Ni ZH, Xing TY, Hou WH, Zhao XY, Tao YL, Zhou FB, Xing YQ

pubmed logopapersMay 14 2025
Acute kidney injury (AKI) post-renal transplantation often has a poor prognosis. This study aimed to identify patients with elevated risks of AKI after kidney transplantation. A retrospective analysis was conducted on 422 patients who underwent kidney transplants from January 2020 to April 2023. Participants from 2020 to 2022 were randomized to training group (n=261) and validation group 1 (n=113), and those in 2023, as validation group 2 (n=48). Risk factors were determined by employing logistic regression analysis alongside the least absolute shrinkage and selection operator, making use of ultrasound hemodynamic, clinical, and laboratory information. Models for prediction were developed using logistic regression analysis and six machine-learning techniques. The evaluation of the logistic regression model encompassed its discrimination, calibration, and applicability in clinical settings, and a nomogram was created to illustrate the model. SHapley Additive exPlanations were used to explain and visualize the best of the six machine learning models. The least absolute shrinkage and selection operator combined with logistic regression identified and incorporated five risk factors into the predictive model. The logistic regression model (AUC=0.927 in the validation set 1; AUC=0.968 in the validation set 2) and the random forest model (AUC=0.946 in the validation set 1;AUC=0.996 in the validation set 2) showed good performance post-validation, with no significant difference in their predictive accuracy. These findings can assist clinicians in the early identification of patients at high risk for AKI, allowing for timely interventions and potentially enhancing the prognosis following kidney transplantation.

Clinical utility of ultrasound and MRI in rheumatoid arthritis: An expert review.

Kellner DA, Morris NT, Lee SM, Baker JF, Chu P, Ranganath VK, Kaeley GS, Yang HH

pubmed logopapersMay 14 2025
Musculoskeletal ultrasound (MSUS) and magnetic resonance imaging (MRI) are advanced imaging techniques that are increasingly important in the diagnosis and management of rheumatoid arthritis (RA) and have significantly enhanced the rheumatologist's ability to assess RA disease activity and progression. This review serves as a five-year update to our previous publication on the contemporary role of imaging in RA, emphasizing the continued importance of MSUS and MRI in clinical practice and their expanding utility. The review examines the role of MSUS in diagnosing RA, differentiating RA from mimickers, scoring systems and quality control measures, novel longitudinal approaches to disease monitoring, and patient populations that may benefit most from MSUS. It also examines the role of MRI in diagnosing pre-clinical and early RA, disease activity monitoring, research and clinical trials, and development of alternative scoring approaches utilizing artificial intelligence. Finally, the role of MRI in RA diagnosis and management is summarized, and selected practice points offer key tips for integrating MSUS and MRI into clinical practice.

Single View Echocardiographic Analysis for Left Ventricular Outflow Tract Obstruction Prediction in Hypertrophic Cardiomyopathy: A Deep Learning Approach

Kim, J., Park, J., Jeon, J., Yoon, Y. E., Jang, Y., Jeong, H., Lee, S.-A., Choi, H.-M., Hwang, I.-C., Cho, G.-Y., Chang, H.-J.

medrxiv logopreprintMay 14 2025
BackgroundAccurate left ventricular outflow tract obstruction (LVOTO) assessment is crucial for hypertrophic cardiomyopathy (HCM) management and prognosis. Traditional methods, requiring multiple views, Doppler, and provocation, is often infeasible, especially where resources are limited. This study aimed to develop and validate a deep learning (DL) model capable of predicting severe LVOTO in HCM patients using only the parasternal long-axis (PLAX) view from transthoracic echocardiography (TTE). MethodsA DL model was trained on PLAX videos extracted from TTE examinations (developmental dataset, n=1,007) to capture both morphological and dynamic motion features, generating a DL index for LVOTO (DLi-LVOTO, range 0-100). Performance was evaluated in an internal test dataset (ITDS, n=87) and externally validated in the distinct hospital dataset (DHDS, n=1,334) and the LVOTO reduction treatment dataset (n=156). ResultsThe model achieved high accuracy in detecting severe LVOTO (pressure gradient[&ge;] 50mmHg), with area under the receiver operating characteristics curve (AUROC) of 0.97 (95% confidence interval: 0.92-1.00) in ITDS and 0.93 (0.92-0.95) in DHDS. At a DLi-LVOTO threshold of 70, the model demonstrated a specificity of 97.3% and negative predictive value (NPV) of 96.1% in ITDS. In DHDS, a cutoff of 60 yielded a specificity of 94.6% and NPV of 95.5%. DLi-LVOTO also decreased significantly after surgical myectomy or Mavacamten treatment, correlating with reductions in peak pressure gradient (p<0.001 for all). ConclusionsOur DL-based approach predicts severe LVOTO using only the PLAX view from TTE, serving as a complementary tool, particularly in resource-limited settings or when Doppler is unavailable, and for monitoring treatment response.

Predicting response to anti-VEGF therapy in neovascular age-related macular degeneration using random forest and SHAP algorithms.

Zhang P, Duan J, Wang C, Li X, Su J, Shang Q

pubmed logopapersMay 14 2025
This study aimed to establish and validate a prediction model based on machine learning methods and SHAP algorithm to predict response to anti-vascular endothelial growth factor (VEGF) therapy in neovascular age-related macular degeneration (AMD). In this retrospective study, we extracted data including demographic characteristics, laboratory test results, and imaging features from optical coherence tomography (OCT) and optical coherence tomography angiography (OCTA). Eight machine learning methods, including Logistic Regression, Gradient Boosting Decision Tree, Random Forest, CatBoost, Support Vector Machine, XGboost, LightGBM, K Nearest Neighbors were employed to develop the predictive model. The machine learning method with optimal performance was selected for further interpretation. Finally, the SHAP algorithm was applied to explain the model's predictions. The study included 145 patients with neovascular AMD. Among the eight models developed, the Random Forest model demonstrated general optimal performance, achieving a high accuracy of 75.86% and the highest area under the receiver operating characteristic curve (AUC) value of 0.91. In this model, important features identified as significant contributors to the response to anti-VEGF therapy in neovascular AMD patients included fractal dimension, total number of end points, total number of junctions, total vessels length, vessels area, average lacunarity, choroidal neovascularization (CNV) type, age, duration and logMAR BCVA. SHAP analysis and visualization provided interpretation at both the factor level and individual level. The Random Forest model for predicting response to anti-VEGF therapy in neovascular AMD using SHAP algorithm proved to be feasible and effective. OCTA imaging features, such as fractal dimension, total number of end points et al, were the most effective predictive factors.

Multi-Task Deep Learning for Predicting Metabolic Syndrome from Retinal Fundus Images in a Japanese Health Checkup Dataset

Itoh, T., Nishitsuka, K., Fukuma, Y., Wada, S.

medrxiv logopreprintMay 14 2025
BackgroundRetinal fundus images provide a noninvasive window into systemic health, offering opportunities for early detection of metabolic disorders such as metabolic syndrome (METS). ObjectiveThis study aimed to develop a deep learning model to predict METS from fundus images obtained during routine health checkups, leveraging a multi-task learning approach. MethodsWe retrospectively analyzed 5,000 fundus images from Japanese health checkup participants. Convolutional neural network (CNN) models were trained to classify METS status, incorporating fundus-specific data augmentation strategies and auxiliary regression tasks targeting clinical parameters such as abdominal circumference (AC). Model performance was evaluated using validation accuracy, test accuracy, and the area under the receiver operating characteristic curve (AUC). ResultsModels employing fundus-specific augmentation demonstrated more stable convergence and superior validation accuracy compared to general-purpose augmentation. Incorporating AC as an auxiliary task further enhanced performance across architectures. The final ensemble model with test-time augmentation achieved a test accuracy of 0.696 and an AUC of 0.73178. ConclusionCombining multi-task learning, fundus-specific data augmentation, and ensemble prediction substantially improves deep learning-based METS classification from fundus images. This approach may offer a practical, noninvasive screening tool for metabolic syndrome in general health checkup settings.

Congenital Heart Disease recognition using Deep Learning/Transformer models

Aidar Amangeldi, Vladislav Yarovenko, Angsar Taigonyrov

arxiv logopreprintMay 13 2025
Congenital Heart Disease (CHD) remains a leading cause of infant morbidity and mortality, yet non-invasive screening methods often yield false negatives. Deep learning models, with their ability to automatically extract features, can assist doctors in detecting CHD more effectively. In this work, we investigate the use of dual-modality (sound and image) deep learning methods for CHD diagnosis. We achieve 73.9% accuracy on the ZCHSound dataset and 80.72% accuracy on the DICOM Chest X-ray dataset.

Unsupervised Out-of-Distribution Detection in Medical Imaging Using Multi-Exit Class Activation Maps and Feature Masking

Yu-Jen Chen, Xueyang Li, Yiyu Shi, Tsung-Yi Ho

arxiv logopreprintMay 13 2025
Out-of-distribution (OOD) detection is essential for ensuring the reliability of deep learning models in medical imaging applications. This work is motivated by the observation that class activation maps (CAMs) for in-distribution (ID) data typically emphasize regions that are highly relevant to the model's predictions, whereas OOD data often lacks such focused activations. By masking input images with inverted CAMs, the feature representations of ID data undergo more substantial changes compared to those of OOD data, offering a robust criterion for differentiation. In this paper, we introduce a novel unsupervised OOD detection framework, Multi-Exit Class Activation Map (MECAM), which leverages multi-exit CAMs and feature masking. By utilizing mult-exit networks that combine CAMs from varying resolutions and depths, our method captures both global and local feature representations, thereby enhancing the robustness of OOD detection. We evaluate MECAM on multiple ID datasets, including ISIC19 and PathMNIST, and test its performance against three medical OOD datasets, RSNA Pneumonia, COVID-19, and HeadCT, and one natural image OOD dataset, iSUN. Comprehensive comparisons with state-of-the-art OOD detection methods validate the effectiveness of our approach. Our findings emphasize the potential of multi-exit networks and feature masking for advancing unsupervised OOD detection in medical imaging, paving the way for more reliable and interpretable models in clinical practice.

A Deep Learning-Driven Framework for Inhalation Injury Grading Using Bronchoscopy Images

Yifan Li, Alan W Pang, Jo Woon Chong

arxiv logopreprintMay 13 2025
Inhalation injuries face a challenge in clinical diagnosis and grading due to the limitations of traditional methods, such as Abbreviated Injury Score (AIS), which rely on subjective assessments and show weak correlations with clinical outcomes. This study introduces a novel deep learning-based framework for grading inhalation injuries using bronchoscopy images with the duration of mechanical ventilation as an objective metric. To address the scarcity of medical imaging data, we propose enhanced StarGAN, a generative model that integrates Patch Loss and SSIM Loss to improve synthetic images' quality and clinical relevance. The augmented dataset generated by enhanced StarGAN significantly improved classification performance when evaluated using the Swin Transformer, achieving an accuracy of 77.78%, an 11.11% improvement over the original dataset. Image quality was assessed using the Fr\'echet Inception Distance (FID), where Enhanced StarGAN achieved the lowest FID of 30.06, outperforming baseline models. Burn surgeons confirmed the realism and clinical relevance of the generated images, particularly the preservation of bronchial structures and color distribution. These results highlight the potential of enhanced StarGAN in addressing data limitations and improving classification accuracy for inhalation injury grading.
Page 157 of 1701699 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.