Sort by:
Page 152 of 1701699 results

Application of Quantitative CT and Machine Learning in the Evaluation and Diagnosis of Polymyositis/Dermatomyositis-Associated Interstitial Lung Disease.

Yang K, Chen Y, He L, Sheng Y, Hei H, Zhang J, Jin C

pubmed logopapersMay 16 2025
To investigate lung changes in patients with polymyositis/dermatomyositis-associated interstitial lung disease (PM/DM-ILD) using quantitative CT and to construct a diagnostic model to evaluate the application of quantitative CT and machine learning in diagnosing PM/DM-ILD. Chest CT images from 348 PM/DM individuals were quantitatively analyzed to obtain the lung volume (LV), mean lung density (MLD), and intrapulmonary vascular volume (IPVV) of the whole lung and each lung lobe. The percentage of high attenuation area (HAA %) was determined using the lung density histogram. Patients hospitalized from 2016 to 2021 were used as the training set (n=258), and from 2022 to 2023 were used as the temporal test set (n=90). Seven classification models were established, and their performance was evaluated through ROC analysis, decision curve analysis, calibration, and precision-recall curve. The optimal model was selected and interpreted with Python's SHAP model interpretation package. Compared to the non-ILD group, the mean lung density and percentage of high attenuation area in the whole lung and each lung lobe were significantly increased, and the lung volume and intrapulmonary vessel volume were significantly decreased in the ILD group. The Random Forest (RF) model demonstrated superior performance with the test set area under the curve of 0.843 (95% CI: 0.821-0.865), accuracy of 0.778, sensitivity of 0.784, and specificity of 0.750. Quantitative CT serves as an objective and precise method to assess pulmonary changes in PM/DM-ILD patients. The RF model based on CT quantitative parameters displayed strong diagnostic efficiency in identifying ILD, offering a new and convenient approach for evaluating and diagnosing PM/DM-ILD patients.

CheX-DS: Improving Chest X-ray Image Classification with Ensemble Learning Based on DenseNet and Swin Transformer

Xinran Li, Yu Liu, Xiujuan Xu, Xiaowei Zhao

arxiv logopreprintMay 16 2025
The automatic diagnosis of chest diseases is a popular and challenging task. Most current methods are based on convolutional neural networks (CNNs), which focus on local features while neglecting global features. Recently, self-attention mechanisms have been introduced into the field of computer vision, demonstrating superior performance. Therefore, this paper proposes an effective model, CheX-DS, for classifying long-tail multi-label data in the medical field of chest X-rays. The model is based on the excellent CNN model DenseNet for medical imaging and the newly popular Swin Transformer model, utilizing ensemble deep learning techniques to combine the two models and leverage the advantages of both CNNs and Transformers. The loss function of CheX-DS combines weighted binary cross-entropy loss with asymmetric loss, effectively addressing the issue of data imbalance. The NIH ChestX-ray14 dataset is selected to evaluate the model's effectiveness. The model outperforms previous studies with an excellent average AUC score of 83.76\%, demonstrating its superior performance.

From Embeddings to Accuracy: Comparing Foundation Models for Radiographic Classification

Xue Li, Jameson Merkow, Noel C. F. Codella, Alberto Santamaria-Pang, Naiteek Sangani, Alexander Ersoy, Christopher Burt, John W. Garrett, Richard J. Bruce, Joshua D. Warner, Tyler Bradshaw, Ivan Tarapov, Matthew P. Lungren, Alan B. McMillan

arxiv logopreprintMay 16 2025
Foundation models, pretrained on extensive datasets, have significantly advanced machine learning by providing robust and transferable embeddings applicable to various domains, including medical imaging diagnostics. This study evaluates the utility of embeddings derived from both general-purpose and medical domain-specific foundation models for training lightweight adapter models in multi-class radiography classification, focusing specifically on tube placement assessment. A dataset comprising 8842 radiographs classified into seven distinct categories was employed to extract embeddings using six foundation models: DenseNet121, BiomedCLIP, Med-Flamingo, MedImageInsight, Rad-DINO, and CXR-Foundation. Adapter models were subsequently trained using classical machine learning algorithms. Among these combinations, MedImageInsight embeddings paired with an support vector machine adapter yielded the highest mean area under the curve (mAUC) at 93.8%, followed closely by Rad-DINO (91.1%) and CXR-Foundation (89.0%). In comparison, BiomedCLIP and DenseNet121 exhibited moderate performance with mAUC scores of 83.0% and 81.8%, respectively, whereas Med-Flamingo delivered the lowest performance at 75.1%. Notably, most adapter models demonstrated computational efficiency, achieving training within one minute and inference within seconds on CPU, underscoring their practicality for clinical applications. Furthermore, fairness analyses on adapters trained on MedImageInsight-derived embeddings indicated minimal disparities, with gender differences in performance within 2% and standard deviations across age groups not exceeding 3%. These findings confirm that foundation model embeddings-especially those from MedImageInsight-facilitate accurate, computationally efficient, and equitable diagnostic classification using lightweight adapters for radiographic image analysis.

Assessing fetal lung maturity: Integration of ultrasound radiomics and deep learning.

Chen W, Zeng B, Ling X, Chen C, Lai J, Lin J, Liu X, Zhou H, Guo X

pubmed logopapersMay 16 2025
This study built a model to forecast the maturity of lungs by blending radiomics and deep learning methods. We examined ultrasound images from 263 pregnancies in the pregnancy stages. Utilizing the GE VOLUSON E8 system we captured images to extract and analyze radiomic features. These features were integrated with clinical data by means of deep learning algorithms such as DenseNet121 to enhance the accuracy of assessing fetal lung maturity. This combined model was validated by receiver operating characteristic (ROC) curve, calibration diagram, as well as decision curve analysis (DCA). We discovered that the accuracy and reliability of the diagnosis indicated that this method significantly improves the level of prediction of fetal lung maturity. This novel non-invasive diagnostic technology highlights the potential advantages of integrating diverse data sources to enhance prenatal care and infant health. The study lays groundwork, for validation and refinement of the model across various healthcare settings.

Research on Machine Learning Models Based on Cranial CT Scan for Assessing Prognosis of Emergency Brain Injury.

Qin J, Shen R, Fu J, Sun J

pubmed logopapersMay 16 2025
To evaluate the prognosis of patients with traumatic brain injury according to the Computed Tomography (CT) findings of skull fracture and cerebral parenchymal hemorrhage. Retrospectively collected data from adult patients who received non-surgical or surgical treatment after the first CT scan with craniocerebral injuries from January 2020 to August 2021. The radiomics features were extracted by Pyradiomics. Dimensionality reduction was then performed using the max relevance and min-redundancy algorithm (mRMR) and the least absolute shrinkage and selection operator (LASSO), with ten-fold cross-validation to select the best radiomics features. Three parsimonious machine learning classifiers, multinomial logistic regression (LR), a support vector machine (SVM), and a naive Bayes (Gaussian distribution), were used to construct radiomics models. A personalized emergency prognostic nomogram for cranial injuries was erected using a logistic regression model based on selected radiomic labels and patients' baseline information at emergency admission. The mRMR algorithm and the LASSO regression model finally extracted 22 top-ranked radiological features and based on these image histological features, the emergency brain injury prediction model was built with SVM, LG, and naive Bayesian classifiers, respectively. The SVM model showed the largest AUC area in training cohort for the three classifications, indicating that the SVM model is more stable and accurate. Moreover, a nomogram prediction model for GOS prognostic score in patients was constructed. We established a nomogram for predicting patients' prognosis through radiomic features and clinical characteristics, provides some data support and guidance for clinical prediction of patients' brain injury prognosis and intervention.

Deep learning predicts HER2 status in invasive breast cancer from multimodal ultrasound and MRI.

Fan Y, Sun K, Xiao Y, Zhong P, Meng Y, Yang Y, Du Z, Fang J

pubmed logopapersMay 16 2025
The preoperative human epidermal growth factor receptor type 2 (HER2) status of breast cancer is typically determined by pathological examination of a core needle biopsy, which influences the efficacy of neoadjuvant chemotherapy (NAC). However, the highly heterogeneous nature of breast cancer and the limitations of needle aspiration biopsy increase the instability of pathological evaluation. The aim of this study was to predict HER2 status in preoperative breast cancer using deep learning (DL) models based on ultrasound (US) and magnetic resonance imaging (MRI). The study included women with invasive breast cancer who underwent US and MRI at our institution between January 2021 and July 2024. US images and dynamic contrast-enhanced T1-weighted MRI images were used to construct DL models (DL-US: the DL model based on US; DL-MRI: the model based on MRI; and DL-MRI&US: the combined model based on both MRI and US). All classifications were based on postoperative pathological evaluation. Receiver operating characteristic analysis and the DeLong test were used to compare the diagnostic performance of the DL models. In the test cohort, DL-US differentiated the HER2 status of breast cancer with an AUC of 0.842 (95% CI: 0.708-0.931), and sensitivity and specificity of 89.5% and 79.3%, respectively. DL-MRI achieved an AUC of 0.800 (95% CI: 0.660-0.902), with sensitivity and specificity of 78.9% and 79.3%, respectively. DL-MRI&US yielded an AUC of 0.898 (95% CI: 0.777-0.967), with sensitivity and specificity of 63.2% and 100.0%, respectively.

The imaging crisis in axial spondyloarthritis.

Diekhoff T, Poddubnyy D

pubmed logopapersMay 16 2025
Imaging holds a pivotal yet contentious role in the early diagnosis of axial spondyloarthritis. Although MRI has enhanced our ability to detect early inflammatory changes, particularly bone marrow oedema in the sacroiliac joints, the poor specificity of this finding introduces a substantial risk of overdiagnosis. The well intentioned push by rheumatologists towards earlier intervention could inadvertently lead to the misclassification of mechanical or degenerative conditions (eg, osteitis condensans ilii) as inflammatory disease, especially in the absence of structural lesions. Diagnostic uncertainty is further fuelled by anatomical variability, sex differences, and suboptimal imaging protocols. Current strategies-such as quantifying bone marrow oedema and analysing its distribution patterns, and integrating clinical and laboratory data-offer partial guidance for avoiding overdiagnosis but fall short of resolving the core diagnostic dilemma. Emerging imaging technologies, including high-resolution sequences, quantitative MRI, radiomics, and artificial intelligence, could improve diagnostic precision, but these tools remain exploratory. This Viewpoint underscores the need for a shift in imaging approaches, recognising that although timely diagnosis and treatment is essential to prevent long-term structural damage, robust and reliable imaging criteria are also needed. Without such advances, the imaging field risks repeating past missteps seen in other rheumatological conditions.

Deep learning model based on ultrasound images predicts BRAF V600E mutation in papillary thyroid carcinoma.

Yu Y, Zhao C, Guo R, Zhang Y, Li X, Liu N, Lu Y, Han X, Tang X, Mao R, Peng C, Yu J, Zhou J

pubmed logopapersMay 16 2025
BRAF V600E mutation status detection facilitates prognosis prediction in papillary thyroid carcinoma (PTC). We developed a deep-learning model to determine the BRAF V600E status in PTC. PTC from three centers were collected as the training set (1341 patients), validation set (148 patients), and external test set (135 patients). After testing the performance of the ResNeSt-50, Vision Transformer, and Swin Transformer V2 (SwinT) models, SwinT was chosen as the optimal backbone. An integrated BrafSwinT model was developed by combining the backbone with a radiomics feature branch and a clinical parameter branch. BrafSwinT demonstrated an AUC of 0.869 in the external test set, outperforming the original SwinT, Vision Transformer, and ResNeSt-50 models (AUC: 0.782-0.824; <i>p</i> value: 0.017-0.041). BrafSwinT showed promising results in determining BRAF V600E mutation status in PTC based on routinely acquired ultrasound images and basic clinical information, thus facilitating risk stratification.

Evaluation of tumour pseudocapsule using computed tomography-based radiomics in pancreatic neuroendocrine tumours to predict prognosis and guide surgical strategy: a cohort study.

Wang Y, Gu W, Huang D, Zhang W, Chen Y, Xu J, Li Z, Zhou C, Chen J, Xu X, Tang W, Yu X, Ji S

pubmed logopapersMay 16 2025
To date, indications for a surgical approach of small pancreatic neuroendocrine tumours (PanNETs) remain controversial. This cohort study aimed to identify the pseudocapsule status preoperatively to estimate the rationality of enucleation and survival prognosis of PanNETs, particularly in small tumours. Clinicopathological data were collected from patients with PanNETs who underwent the first pancreatectomy at our hospital (n = 578) between February 2012 and September 2023. Kaplan-Meier curves were constructed to visualise prognostic differences. Five distinct tissue samples were obtained for single-cell RNA sequencing (scRNA-seq) to evaluate variations in the tumour microenvironment. Radiological features were extracted from preoperative arterial-phase contrast-enhanced computed tomography. The performance of the pseudocapsule radiomics model was assessed using the area under the curve (AUC) metric. 475 cases (mean [SD] age, 53.01 [12.20] years; female vs male, 1.24:1) were eligible for this study. The mean pathological diameter of tumour was 2.99 cm (median: 2.50 cm; interquartile range [IQR]: 1.50-4.00 cm). These cases were stratified into complete (223, 46.95%) and incomplete (252, 53.05%) pseudocapsule groups. A statistically significant difference in aggressive indicators was observed between the two groups (P < 0.001). Through scRNA-seq analysis, we identified that the incomplete group presented a markedly immunosuppressive microenvironment. Regarding the impact on recurrence-free survival, the 3-year and 5-year rates were 94.8% and 92.5%, respectively, for the complete pseudocapsule group, compared to 76.7% and 70.4% for the incomplete pseudocapsule group. The radiomics-predictive model has a significant discrimination for the state of the pseudocapsule, particularly in small tumours (AUC, 0.744; 95% CI, 0.652-0.837). By combining computed tomography-based radiomics and machine learning for preoperative identification of pseudocapsule status, the intact group is more likely to benefit from enucleation.
Page 152 of 1701699 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.