Sort by:
Page 15 of 38375 results

A multi-dynamic low-rank deep image prior (ML-DIP) for real-time 3D cardiovascular MRI

Chong Chen, Marc Vornehm, Preethi Chandrasekaran, Muhammad A. Sultan, Syed M. Arshad, Yingmin Liu, Yuchi Han, Rizwan Ahmad

arxiv logopreprintJul 25 2025
Purpose: To develop a reconstruction framework for 3D real-time cine cardiovascular magnetic resonance (CMR) from highly undersampled data without requiring fully sampled training data. Methods: We developed a multi-dynamic low-rank deep image prior (ML-DIP) framework that models spatial image content and temporal deformation fields using separate neural networks. These networks are optimized per scan to reconstruct the dynamic image series directly from undersampled k-space data. ML-DIP was evaluated on (i) a 3D cine digital phantom with simulated premature ventricular contractions (PVCs), (ii) ten healthy subjects (including two scanned during both rest and exercise), and (iii) five patients with PVCs. Phantom results were assessed using peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). In vivo performance was evaluated by comparing left-ventricular function quantification (against 2D real-time cine) and image quality (against 2D real-time cine and binning-based 5D-Cine). Results: In the phantom study, ML-DIP achieved PSNR > 29 dB and SSIM > 0.90 for scan times as short as two minutes, while recovering cardiac motion, respiratory motion, and PVC events. In healthy subjects, ML-DIP yielded functional measurements comparable to 2D cine and higher image quality than 5D-Cine, including during exercise with high heart rates and bulk motion. In PVC patients, ML-DIP preserved beat-to-beat variability and reconstructed irregular beats, whereas 5D-Cine showed motion artifacts and information loss due to binning. Conclusion: ML-DIP enables high-quality 3D real-time CMR with acceleration factors exceeding 1,000 by learning low-rank spatial and temporal representations from undersampled data, without relying on external fully sampled training datasets.

RegScore: Scoring Systems for Regression Tasks

Michal K. Grzeszczyk, Tomasz Szczepański, Pawel Renc, Siyeop Yoon, Jerome Charton, Tomasz Trzciński, Arkadiusz Sitek

arxiv logopreprintJul 25 2025
Scoring systems are widely adopted in medical applications for their inherent simplicity and transparency, particularly for classification tasks involving tabular data. In this work, we introduce RegScore, a novel, sparse, and interpretable scoring system specifically designed for regression tasks. Unlike conventional scoring systems constrained to integer-valued coefficients, RegScore leverages beam search and k-sparse ridge regression to relax these restrictions, thus enhancing predictive performance. We extend RegScore to bimodal deep learning by integrating tabular data with medical images. We utilize the classification token from the TIP (Tabular Image Pretraining) transformer to generate Personalized Linear Regression parameters and a Personalized RegScore, enabling individualized scoring. We demonstrate the effectiveness of RegScore by estimating mean Pulmonary Artery Pressure using tabular data and further refine these estimates by incorporating cardiac MRI images. Experimental results show that RegScore and its personalized bimodal extensions achieve performance comparable to, or better than, state-of-the-art black-box models. Our method provides a transparent and interpretable approach for regression tasks in clinical settings, promoting more informed and trustworthy decision-making. We provide our code at https://github.com/SanoScience/RegScore.

A multi-dynamic low-rank deep image prior (ML-DIP) for real-time 3D cardiovascular MRI

Chong Chen, Marc Vornehm, Preethi Chandrasekaran, Muhammad A. Sultan, Syed M. Arshad, Yingmin Liu, Yuchi Han, Rizwan Ahmad

arxiv logopreprintJul 25 2025
Purpose: To develop a reconstruction framework for 3D real-time cine cardiovascular magnetic resonance (CMR) from highly undersampled data without requiring fully sampled training data. Methods: We developed a multi-dynamic low-rank deep image prior (ML-DIP) framework that models spatial image content and temporal deformation fields using separate neural networks. These networks are optimized per scan to reconstruct the dynamic image series directly from undersampled k-space data. ML-DIP was evaluated on (i) a 3D cine digital phantom with simulated premature ventricular contractions (PVCs), (ii) ten healthy subjects (including two scanned during both rest and exercise), and (iii) five patients with PVCs. Phantom results were assessed using peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM). In vivo performance was evaluated by comparing left-ventricular function quantification (against 2D real-time cine) and image quality (against 2D real-time cine and binning-based 5D-Cine). Results: In the phantom study, ML-DIP achieved PSNR > 29 dB and SSIM > 0.90 for scan times as short as two minutes, while recovering cardiac motion, respiratory motion, and PVC events. In healthy subjects, ML-DIP yielded functional measurements comparable to 2D cine and higher image quality than 5D-Cine, including during exercise with high heart rates and bulk motion. In PVC patients, ML-DIP preserved beat-to-beat variability and reconstructed irregular beats, whereas 5D-Cine showed motion artifacts and information loss due to binning. Conclusion: ML-DIP enables high-quality 3D real-time CMR with acceleration factors exceeding 1,000 by learning low-rank spatial and temporal representations from undersampled data, without relying on external fully sampled training datasets.

Back to the Future-Cardiovascular Imaging From 1966 to Today and Tomorrow.

Wintersperger BJ, Alkadhi H, Wildberger JE

pubmed logopapersJul 23 2025
This article, on the 60th anniversary of the journal Investigative Radiology, a journal dedicated to cutting-edge imaging technology, discusses key historical milestones in CT and MRI technology, as well as the ongoing advancement of contrast agent development for cardiovascular imaging over the past decades. It specifically highlights recent developments and the current state-of-the-art technology, including photon-counting detector CT and artificial intelligence, which will further push the boundaries of cardiovascular imaging. What were once ideas and visions have become today's clinical reality for the benefit of patients, and imaging technology will continue to evolve and transform modern medicine.

CTA-Derived Plaque Characteristics and Risk of Acute Coronary Syndrome in Patients With Coronary Artery Calcium Score of Zero: Insights From the ICONIC Trial.

Jonas RA, Nurmohamed NS, Crabtree TR, Aquino M, Jennings RS, Choi AD, Lin FY, Lee SE, Andreini D, Bax J, Cademartiri F, Chinnaiyan K, Chow BJW, Conte E, Cury R, Feuchtner G, Hadamitzky M, Kim YJ, Maffei E, Marques H, Plank F, Pontone G, van Rosendael AR, Villines TC, Al'Aref SJ, Baskaran L, Cho I, Danad I, Heo R, Lee JH, Rizvi A, Stuijfzand WJ, Sung JM, Park HB, Budoff MJ, Samady H, Shaw LJ, Stone PH, Virmani R, Narula J, Min JK, Earls JP, Chang HJ

pubmed logopapersJul 23 2025
<b>BACKGROUND</b>. Coronary artery calcium (CAC) scoring is used to stratify acute coronary syndrome (ACS) risk. Nonetheless, patients with a CAC score of zero (CAC<sub>0</sub>) remain at risk from noncalcified plaque components. <b>OBJECTIVE</b>. The purpose of this study was to explore CTA-derived coronary artery plaque characteristics in symptomatic patients with CAC<sub>0</sub> who subsequently have ACS through comparisons with patients with a CAC score greater than 0 (CAC<sub>> 0</sub>) who subsequently have ACS as well as with patients with CAC<sub>0</sub> who do not subsequently have ACS. <b>METHODS</b>. This study entailed a secondary retrospective analysis of prior prospective registry data. The international multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter) registry collected longitudinal observational data on symptomatic patients who underwent clinically indicated coronary CTA from January 2004 to May 2010. ICONIC (Incident Coronary Syndromes Identified by CT) was a nested cohort study conducted within CONFIRM that identified patients without known coronary artery disease (CAD) at the time of CTA who did and did not subsequently have ACS (i.e., the ACS and control groups, respectively) and who were propensity matched in a 1:1 ratio on the basis of CAD risk factors and CAD severity on CTA. The present ICONIC substudy selected matched patients in the ACS and control groups who both had documented CAC scores. CTA examinations were analyzed using artificial intelligence software for automated quantitative plaque assessment. In the ACS group, invasive angiography findings were used to identify culprit lesions. <b>RESULTS</b>. The present study included 216 patients (mean age, 55.6 years; 91 women and 125 men), with 108 patients in each of the ACS and control groups. In the ACS group, 23% (<i>n</i> = 25) of patients had CAC<sub>0</sub>. In the ACS group, culprit lesions in the subsets of patients with CAC<sub>0</sub> and CAC<sub>> 0</sub> showed no significant differences in fibrous, fibrofatty, or necrotic-core plaque volumes (<i>p</i> > .05). In the CAC<sub>0</sub> subset, patients with ACS, compared with control patients, had greater mean (± SD) fibrous plaque volume (29.4 ± 42.0 vs 5.5 ± 15.2 mm<sup>3</sup>, <i>p</i> < .001), fibrofatty plaque volume (27.3 ± 52.2 vs 1.3 ± 3.7 mm<sup>3</sup>, <i>p</i> < .001), and necrotic-core plaque volume (2.8 ± 6.4 vs 0.0 ± 0.1 mm<sup>3</sup>, <i>p</i> < .001). <b>CONCLUSION</b>. After propensity-score matching, 23% of patients with ACS had CAC<sub>0</sub>. Patients with CAC<sub>0</sub> in the ACS and control groups showed significant differences in volumes of noncalcified plaque components. <b>CLINICAL IMPACT</b>. Methods that identify and quantify noncalcified plaque forms may help characterize ACS risk in symptomatic patients with CAC<sub>0</sub>.

Artificial Intelligence Empowers Novice Users to Acquire Diagnostic-Quality Echocardiography.

Trost B, Rodrigues L, Ong C, Dezellus A, Goldberg YH, Bouchat M, Roger E, Moal O, Singh V, Moal B, Lafitte S

pubmed logopapersJul 22 2025
Cardiac ultrasound exams provide real-time data to guide clinical decisions but require highly trained sonographers. Artificial intelligence (AI) that uses deep learning algorithms to guide novices in the acquisition of diagnostic echocardiographic studies may broaden access and improve care. The objective of this trial was to evaluate whether nurses without previous ultrasound experience (novices) could obtain diagnostic-quality acquisitions of 10 echocardiographic views using AI-based software. This noninferiority study was prospective, international, nonrandomized, and conducted at 2 medical centers, in the United States and France, from November 2023 to August 2024. Two limited cardiac exams were performed on adult patients scheduled for a clinically indicated echocardiogram; one was conducted by a novice using AI guidance and one by an expert (experienced sonographer or cardiologist) without it. Primary endpoints were evaluated by 5 experienced cardiologists to assess whether the novice exam was of sufficient quality to visually analyze the left ventricular size and function, the right ventricle size, and the presence of nontrivial pericardial effusion. Secondary endpoints included 8 additional cardiac parameters. A total of 240 patients (mean age 62.6 years; 117 women (48.8%); mean body mass index 26.6 kg/m<sup>2</sup>) completed the study. One hundred percent of the exams performed by novices with the studied software were of sufficient quality to assess the primary endpoints. Cardiac parameters assessed in exams conducted by novices and experts were strongly correlated. AI-based software provides a safe means for novices to perform diagnostic-quality cardiac ultrasounds after a short training period.

Semi-supervised motion flow and myocardial strain estimation in cardiac videos using distance maps and memory networks.

Portal N, Dietenbeck T, Khan S, Nguyen V, Prigent M, Zarai M, Bouazizi K, Sylvain J, Redheuil A, Montalescot G, Kachenoura N, Achard C

pubmed logopapersJul 22 2025
Myocardial strain plays a crucial role in diagnosing heart failure and myocardial infarction. Its computation relies on assessing heart muscle motion throughout the cardiac cycle. This assessment can be performed by following key points on each frame of a cine Magnetic Resonance Imaging (MRI) sequence. The use of segmentation labels yields more accurate motion estimation near heart muscle boundaries. However, since few frames in a cardiac sequence usually have segmentation labels, most methods either rely on annotated pairs of frames/volumes, greatly reducing available data, or use all frames of the cardiac cycle without segmentation supervision. Moreover, these techniques rarely utilize more than two phases during training. In this work, a new semi-supervised motion estimation algorithm using all frames of the cardiac sequence is presented. The distance map generated from the end-diastolic segmentation label is used to weight loss functions. The method is tested on an in-house dataset containing 271 patients. Several deep learning image registration and tracking algorithms were retrained on our dataset and compared to our approach. The proposed approach achieves an average End Point Error (EPE) of 1.02mm, against 1.19mm for RAFT (Recurrent All-Pairs Field Transforms). Using the end-diastolic distance map further improves this metric to 0.95mm compared to 0.91 for the fully supervised version. Correlations in systolic peak were 0.83 and 0.90 for the left ventricular global radial and circumferential strain respectively, and 0.91 for the right ventricular circumferential strain.

A Benchmark Framework for the Right Atrium Cavity Segmentation From LGE-MRIs.

Bai J, Zhu J, Chen Z, Yang Z, Lu Y, Li L, Li Q, Wang W, Zhang H, Wang K, Gan J, Zhao J, Lu H, Li S, Huang J, Chen X, Zhang X, Xu X, Li L, Tian Y, Campello VM, Lekadir K

pubmed logopapersJul 22 2025
The right atrium (RA) is critical for cardiac hemodynamics but is often overlooked in clinical diagnostics. This study presents a benchmark framework for RA cavity segmentation from late gadolinium-enhanced magnetic resonance imaging (LGE-MRIs), leveraging a two-stage strategy and a novel 3D deep learning network, RASnet. The architecture addresses challenges in class imbalance and anatomical variability by incorporating multi-path input, multi-scale feature fusion modules, Vision Transformers, context interaction mechanisms, and deep supervision. Evaluated on datasets comprising 354 LGE-MRIs, RASnet achieves SOTA performance with a Dice score of 92.19% on a primary dataset and demonstrates robust generalizability on an independent dataset. The proposed framework establishes a benchmark for RA cavity segmentation, enabling accurate and efficient analysis for cardiac imaging applications. Open-source code (https://github.com/zjinw/RAS) and data (https://zenodo.org/records/15524472) are provided to facilitate further research and clinical adoption.

Dyna3DGR: 4D Cardiac Motion Tracking with Dynamic 3D Gaussian Representation

Xueming Fu, Pei Wu, Yingtai Li, Xin Luo, Zihang Jiang, Junhao Mei, Jian Lu, Gao-Jun Teng, S. Kevin Zhou

arxiv logopreprintJul 22 2025
Accurate analysis of cardiac motion is crucial for evaluating cardiac function. While dynamic cardiac magnetic resonance imaging (CMR) can capture detailed tissue motion throughout the cardiac cycle, the fine-grained 4D cardiac motion tracking remains challenging due to the homogeneous nature of myocardial tissue and the lack of distinctive features. Existing approaches can be broadly categorized into image based and representation-based, each with its limitations. Image-based methods, including both raditional and deep learning-based registration approaches, either struggle with topological consistency or rely heavily on extensive training data. Representation-based methods, while promising, often suffer from loss of image-level details. To address these limitations, we propose Dynamic 3D Gaussian Representation (Dyna3DGR), a novel framework that combines explicit 3D Gaussian representation with implicit neural motion field modeling. Our method simultaneously optimizes cardiac structure and motion in a self-supervised manner, eliminating the need for extensive training data or point-to-point correspondences. Through differentiable volumetric rendering, Dyna3DGR efficiently bridges continuous motion representation with image-space alignment while preserving both topological and temporal consistency. Comprehensive evaluations on the ACDC dataset demonstrate that our approach surpasses state-of-the-art deep learning-based diffeomorphic registration methods in tracking accuracy. The code will be available in https://github.com/windrise/Dyna3DGR.

Semantic Segmentation for Preoperative Planning in Transcatheter Aortic Valve Replacement

Cedric Zöllner, Simon Reiß, Alexander Jaus, Amroalalaa Sholi, Ralf Sodian, Rainer Stiefelhagen

arxiv logopreprintJul 22 2025
When preoperative planning for surgeries is conducted on the basis of medical images, artificial intelligence methods can support medical doctors during assessment. In this work, we consider medical guidelines for preoperative planning of the transcatheter aortic valve replacement (TAVR) and identify tasks, that may be supported via semantic segmentation models by making relevant anatomical structures measurable in computed tomography scans. We first derive fine-grained TAVR-relevant pseudo-labels from coarse-grained anatomical information, in order to train segmentation models and quantify how well they are able to find these structures in the scans. Furthermore, we propose an adaptation to the loss function in training these segmentation models and through this achieve a +1.27% Dice increase in performance. Our fine-grained TAVR-relevant pseudo-labels and the computed tomography scans we build upon are available at https://doi.org/10.5281/zenodo.16274176.
Page 15 of 38375 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.