Sort by:
Page 14 of 1601593 results

MDFNet: a multi-dimensional feature fusion model based on structural magnetic resonance imaging representations for brain age estimation.

Zhang C, Nan P, Song L, Wang Y, Su K, Zheng Q

pubmed logopapersSep 18 2025
Brain age estimation plays a significant role in understanding the aging process and its relationship with neurodegenerative diseases. The aim of the study is to devise a unified multi-dimensional feature fusion model (MDFNet) to enhance the brain age estimation solely on structural MRI but with a diverse representation of whole brain, tissue segmentation of gray matter volume, node message passing of brain network, edge-based graph path convolution of brain connectivity, and demographic data. The MDFNet was developed by devising and integrating a whole-brain-level Euclidean-Convolution channel (WBEC-channel), a tissue-level Euclidean-convolution channel (TEC-channel), a Graph-convolution channel based on node message passing (nodeGCN-channel) and an edge-based graph path convolution channel on brain connectivity (edgeGCN-channel), and a multilayer perceptron (MLP) channel for demographic data (MLP-channel) to enhance the multi-dimensional feature fusion. The MDFNet was validated on 1872 healthy subjects from four public datasets, and applied to an independent cohort of Alzheimer's Disease (AD) patients. The interpretability analysis and normative modeling of the MDFNet in brain age estimation were also performed. The MDFNet achieved a superior performance of Mean Absolute Error (MAE) of 4.396 ± 0.244 years, a Pearson Correlation Coefficient (PCC) of 0.912 ± 0.002, and a Spearman's Rank Correlation (SRCC) of 0.819 ± 0.015 when comparing with the state-of-the-art deep learning models. The AD group exhibited a significantly greater brain age gap (BAG) than health group (P < 0.05), and the normative modeling also exhibited a significantly higher mean Z-scores of AD patients than healthy subjects (P < 0.05). The interpretability was also visualized at both the group and individual level, enhancing the reliability of the MDFNet. The MDFNet enhanced the brain age estimation solely on structural MRI by employing a multi-dimensional feature integration strategy.

Compartment-specific Fat Distribution Profiles have Distinct Relationships with Cardiovascular Ageing and Future Cardiovascular Events

Maldonado-Garcia, C., Salih, A., Neubauer, S., Petersen, S. E., Raisi-Estabragh, Z.

medrxiv logopreprintSep 18 2025
Obesity is a global public health priority and a major risk factor for cardiovascular disease (CVD). Emerging evidence indicates variation in pathologic consequences of obesity deposition across different body compartments. Biological heart age may be estimated from imaging measures of cardiac structure and function and captures risk beyond traditional measures. Using cardiac and abdominal magnetic resonance imaging (MRI) from 34,496 UK Biobank participants and linked health record data, we investigated how compartment-specific obesity phenotypes relate to cardiac ageing and incident CVD risk. Biological heart age was estimated using machine learning from 56 cardiac MRI phenotypes. K-means clustering of abdominal visceral (VAT), abdominal subcutaneous (ASAT), and pericardial (PAT) adiposity identified a high-risk cluster (characterised by greater adiposity across all three depots) associated with accelerated cardiac ageing - and a lower-risk cluster linked to decelerated ageing. These clusters provided more precise stratification of cardiovascular ageing trajectories than established body mass index categories. Mediation analysis showed that VAT and PAT explained 13.7% and 11.9% of obesity-associated CVD risk, respectively, whereas ASAT contributed minimally, with effects more pronounced in males. Thus, cardiovascular risk appears to be driven primarily by visceral and pericardial rather than subcutaneous fat. Our findings reveal a distinct risk profile of compartment-specific fat distributions and show the importance of pericardial and visceral fat as drivers of greater cardiovascular ageing. Advanced image-defined adiposity profiling may enhance CVD risk prediction beyond anthropometric measures and enhance mechanistic understanding.

MRI on a Budget: Leveraging Low and Ultra-Low Intensity Technology in Africa.

Ussi KK, Mtenga RB

pubmed logopapersSep 18 2025
Magnetic resonance imaging (MRI) is a cornerstone of brain and spine diagnostics. Yet, access across Africa is limited by high installation costs, power requirements, and the need for specialized shielding and facilities. Low-and ultra low-field (ULF) MRI systems operating below 0.3 T are emerging as a practical alternative to expand neuroimaging capacity in resource-constrained settings. However, its faced with challenges that hinder its use in clinical setting. Technological advances that seek to tackle these challenges such as permanent Halbach array magnets, portable scanner designs such as those successfully deployed in Uganda and Malawi, and deep learning methods including convolutional neural network electromagnetic interference cancellation and residual U-Net image reconstruction have improved image quality and reduced noise, making ULF MRI increasingly viable. We review the state of low-field MRI technology, its application in point-of-care and rural contexts, and the specific limitations that remain, including reduced signal-to-noise ratio, larger voxel size requirements, and susceptibility to motion artifacts. Although not a replacement for high-field scanners in detecting subtle or small lesions, low-field MRI offers a promising pathway to broaden diagnostic imaging availability, support clinical decision-making, and advance equitable neuroimaging research in under-resourced regions.ABBREVIATIONS: CNN=Convolutional neural network; EMI=Electromagnetic interference; FID=Free induction wave; LMIC=Low and middle income countries; MRI=Magnetic Resonance Imaging; NCDs=Non communicable diseases; RF=Radiofrequency Pulse; SNR= Signal to noise ratio; TBI=Traumatic brain Injury.

An Efficient Neuro-framework for Brain Tumor Classification Using a CNN-based Self-supervised Learning Approach with Genetic Optimizations.

Ravali P, Reddy PCS, Praveen P

pubmed logopapersSep 18 2025
Accurate and non-invasive grading of glioma brain tumors from MRI scans is challenging due to limited labeled data and the complexity of clinical evaluation. This study aims to develop a robust and efficient deep learning framework for improved glioma classification using MRI images. A multi-stage framework is proposed, starting with SimCLR-based self-supervised learning for representation learning without labels, followed by Deep Embedded Clustering to extract and group features effectively. EfficientNet-B7 is used for initial classification due to its parameter efficiency. A weighted ensemble of EfficientNet-B7, ResNet-50, and DenseNet-121 is employed for the final classification. Hyperparameters are fine-tuned using a Differential Evolution-optimized Genetic Algorithm to enhance accuracy and training efficiency. EfficientNet-B7 achieved approximately 88-90% classification accuracy. The weighted ensemble improved this to approximately 93%. Genetic optimization further enhanced accuracy by 3-5% and reduced training time by 15%. The framework overcomes data scarcity and limited feature extraction issues in traditional CNNs. The combination of self-supervised learning, clustering, ensemble modeling, and evolutionary optimization provides improved performance and robustness, though it requires significant computational resources and further clinical validation. The proposed framework offers an accurate and scalable solution for glioma classification from MRI images. It supports faster, more reliable clinical decision-making and holds promise for real-world diagnostic applications.

NeuroRAD-FM: A Foundation Model for Neuro-Oncology with Distributionally Robust Training

Moinak Bhattacharya, Angelica P. Kurtz, Fabio M. Iwamoto, Prateek Prasanna, Gagandeep Singh

arxiv logopreprintSep 18 2025
Neuro-oncology poses unique challenges for machine learning due to heterogeneous data and tumor complexity, limiting the ability of foundation models (FMs) to generalize across cohorts. Existing FMs also perform poorly in predicting uncommon molecular markers, which are essential for treatment response and risk stratification. To address these gaps, we developed a neuro-oncology specific FM with a distributionally robust loss function, enabling accurate estimation of tumor phenotypes while maintaining cross-institution generalization. We pretrained self-supervised backbones (BYOL, DINO, MAE, MoCo) on multi-institutional brain tumor MRI and applied distributionally robust optimization (DRO) to mitigate site and class imbalance. Downstream tasks included molecular classification of common markers (MGMT, IDH1, 1p/19q, EGFR), uncommon alterations (ATRX, TP53, CDKN2A/2B, TERT), continuous markers (Ki-67, TP53), and overall survival prediction in IDH1 wild-type glioblastoma at UCSF, UPenn, and CUIMC. Our method improved molecular prediction and reduced site-specific embedding differences. At CUIMC, mean balanced accuracy rose from 0.744 to 0.785 and AUC from 0.656 to 0.676, with the largest gains for underrepresented endpoints (CDKN2A/2B accuracy 0.86 to 0.92, AUC 0.73 to 0.92; ATRX AUC 0.69 to 0.82; Ki-67 accuracy 0.60 to 0.69). For survival, c-index improved at all sites: CUIMC 0.592 to 0.597, UPenn 0.647 to 0.672, UCSF 0.600 to 0.627. Grad-CAM highlighted tumor and peri-tumoral regions, confirming interpretability. Overall, coupling FMs with DRO yields more site-invariant representations, improves prediction of common and uncommon markers, and enhances survival discrimination, underscoring the need for prospective validation and integration of longitudinal and interventional signals to advance precision neuro-oncology.

Machine Learning based Radiomics from Multi-parametric Magnetic Resonance Imaging for Predicting Lymph Node Metastasis in Cervical Cancer.

Liu J, Zhu M, Li L, Zang L, Luo L, Zhu F, Zhang H, Xu Q

pubmed logopapersSep 18 2025
Construct and compare multiple machine learning models to predict lymph node (LN) metastasis in cervical cancer, utilizing radiomic features extracted from preoperative multi-parametric magnetic resonance imaging (MRI). This study retrospectively enrolled 407 patients with cervical cancer who were randomly divided into a training cohort (n=284) and a validation cohort (n=123). A total of 4065 radiomic features were extracted from the tumor regions of interest on contrast-enhanced T1-weighted imaging, T2-weighted imaging, and diffusion-weighted imaging for each patient. The Mann-Whitney U test, Spearman correlation analysis, and selection operator Cox regression analysis were employed for radiomic feature selection. The relationship between MRI radiomic features and LN status was analyzed using five machine-learning algorithms. Model performance was evaluated by measuring the area under the receiver-operating characteristic curve (AUC) and accuracy (ACC). Moreover, Kaplan-Meier analysis was used to validate the prognostic value of selected clinical and radiomic characteristics. LN metastasis was pathologically detected in 24.3% (99/407) of patients. Following a three-step feature selection, 18 radiomic features were employed for model construction. The XGBoost model exhibited superior performance compared to other models, achieving an AUC, accuracy, sensitivity, specificity, and F1 score of 0.9268, 0.8969, 0.7419, 0.9891, and 0.8364, respectively, on the validation set. Additionally, Kaplan-Meier curves indicated a significant correlation between radiomic scores and progression-free survival in cervical cancer patients (p < 0.05). Among the machine learning models, XGBoost demonstrated the best predictive ability for LN metastasis and showed prognostic value through its radiomic score, highlighting its clinical potential. Machine learning-based multi-parametric MRI radiomic analysis demonstrated promising performance in the preoperative prediction of LN metastasis and clinical prognosis in cervical cancer.

Visionerves: Automatic and Reproducible Hybrid AI for Peripheral Nervous System Recognition Applied to Endometriosis Cases

Giammarco La Barbera, Enzo Bonnot, Thomas Isla, Juan Pablo de la Plata, Joy-Rose Dunoyer de Segonzac, Jennifer Attali, Cécile Lozach, Alexandre Bellucci, Louis Marcellin, Laure Fournier, Sabine Sarnacki, Pietro Gori, Isabelle Bloch

arxiv logopreprintSep 18 2025
Endometriosis often leads to chronic pelvic pain and possible nerve involvement, yet imaging the peripheral nerves remains a challenge. We introduce Visionerves, a novel hybrid AI framework for peripheral nervous system recognition from multi-gradient DWI and morphological MRI data. Unlike conventional tractography, Visionerves encodes anatomical knowledge through fuzzy spatial relationships, removing the need for selection of manual ROIs. The pipeline comprises two phases: (A) automatic segmentation of anatomical structures using a deep learning model, and (B) tractography and nerve recognition by symbolic spatial reasoning. Applied to the lumbosacral plexus in 10 women with (confirmed or suspected) endometriosis, Visionerves demonstrated substantial improvements over standard tractography, with Dice score improvements of up to 25% and spatial errors reduced to less than 5 mm. This automatic and reproducible approach enables detailed nerve analysis and paves the way for non-invasive diagnosis of endometriosis-related neuropathy, as well as other conditions with nerve involvement.

Integrating artificial intelligence with Gamma Knife radiosurgery in treating meningiomas and schwannomas: a review.

Alhosanie TN, Hammo B, Klaib AF, Alshudifat A

pubmed logopapersSep 18 2025
Meningiomas and schwannomas are benign tumors that affect the central nervous system, comprising up to one-third of intracranial neoplasms. Gamma Knife radiosurgery (GKRS), or stereotactic radiosurgery (SRS), is a form of radiation therapy. Although referred to as "surgery," GKRS does not involve incisions. The GK medical device effectively utilizes highly focused gamma rays to treat lesions or tumors, primarily in the brain. In radiation oncology, machine learning (ML) has been used in various aspects, including outcome prediction, quality control, treatment planning, and image segmentation. This review will showcase the advantages of integrating artificial intelligence with Gamma Knife technology in treating schwannomas and meningiomas.This review adheres to PRISMA guidelines. We searched the PubMed, Scopus, and IEEE databases to identify studies published between 2021 and March 2025 that met our inclusion and exclusion criteria. The focus was on AI algorithms applied to patients with vestibular schwannoma and meningioma treated with GKRS. Two reviewers participated in the data extraction and quality assessment process.A total of nine studies were reviewed in this analysis. One distinguished deep learning (DL) model is a dual-pathway convolutional neural network (CNN) that integrates T1-weighted (T1W) and T2-weighted (T2W) MRI scans. This model was tested on 861 patients who underwent GKRS, achieving a Dice Similarity Coefficient (DSC) of 0.90. ML-based radiomics models have also demonstrated that certain radiomic features can predict the response of vestibular schwannomas and meningiomas to radiosurgery. Among these, the neural network model exhibited the best performance. AI models were also employed to predict complications following GKRS, such as peritumoral edema. A Random Survival Forest (RSF) model was developed using clinical, semantic, and radiomics variables, achieving a C-index score of 0.861 and 0.780. This model enables the classification of patients into high-risk and low-risk categories for developing post-GKRS edema.AI and ML models show great potential in tumor segmentation, volumetric assessment, and predicting treatment outcomes for vestibular schwannomas and meningiomas treated with GKRS. However, their successful clinical implementation relies on overcoming challenges related to external validation, standardization, and computational demands. Future research should focus on large-scale, multi-institutional validation studies, integrating multimodal data, and developing cost-effective strategies for deploying AI technologies.

Decision Strategies in AI-Based Ensemble Models in Opportunistic Alzheimer's Detection from Structural MRI.

Hammonds SK, Eftestøl T, Kurz KD, Fernandez-Quilez A

pubmed logopapersSep 17 2025
Alzheimer's disease (AD) is a neurodegenerative condition and the most common form of dementia. Recent developments in AD treatment call for robust diagnostic tools to facilitate medical decision-making. Despite progress for early diagnostic tests, there remains uncertainty about clinical use. Structural magnetic resonance imaging (MRI), as a readily available imaging tool in the current AD diagnostic pathway, in combination with artificial intelligence, offers opportunities of added value beyond symptomatic evaluation. However, MRI studies in AD tend to suffer from small datasets and consequently limited generalizability. Although ensemble models take advantage of the strengths of several models to improve performance and generalizability, there is little knowledge of how the different ensemble models compare performance-wise and the relationship between detection performance and model calibration. The latter is especially relevant for clinical translatability. In our study, we applied three ensemble decision strategies with three different deep learning architectures for multi-class AD detection with structural MRI. For two of the three architectures, the weighted average was the best decision strategy in terms of balanced accuracy and calibration error. In contrast to the base models, the results of the ensemble models showed that the best detection performance corresponded to the lowest calibration error, independent of the architecture. For each architecture, the best ensemble model reduced the estimated calibration error compared to the base model average from (1) 0.174±0.01 to 0.164±0.04, (2) 0.182±0.02 to 0.141±0.04, and (3) 0.269±0.08 to 0.240±0.04 and increased the balanced accuracy from (1) 0.527±0.05 to 0.608±0.06, (2) 0.417±0.03 to 0.456±0.04, and (3) 0.348±0.02 to 0.371±0.03.

Non-iterative and uncertainty-aware MRI-based liver fat estimation using an unsupervised deep learning method.

Meneses JP, Tejos C, Makalic E, Uribe S

pubmed logopapersSep 17 2025
Liver proton density fat fraction (PDFF), the ratio between fat-only and overall proton densities, is an extensively validated biomarker associated with several diseases. In recent years, numerous deep learning-based methods for estimating PDFF have been proposed to optimize acquisition and post-processing times without sacrificing accuracy, compared to conventional methods. However, the lack of interpretability and the often poor generalizability of these DL-based models undermine the adoption of such techniques in clinical practice. In this work, we propose an Artificial Intelligence-based Decomposition of water and fat with Echo Asymmetry and Least-squares (AI-DEAL) method, designed to estimate both proton density fat fraction (PDFF) and the associated uncertainty maps. Once trained, AI-DEAL performs a one-shot MRI water-fat separation by first calculating the nonlinear confounder variables, R<sub>2</sub><sup>∗</sup> and off-resonance field. It then employs a weighted least squares approach to compute water-only and fat-only signals, along with their corresponding covariance matrix, which are subsequently used to derive the PDFF and its associated uncertainty. We validated our method using in vivo liver CSE-MRI, a fat-water phantom, and a numerical phantom. AI-DEAL demonstrated PDFF biases of 0.25% and -0.12% at two liver ROIs, outperforming state-of-the-art deep learning-based techniques. Although trained using in vivo data, our method exhibited PDFF biases of -3.43% in the fat-water phantom and -0.22% in the numerical phantom with no added noise. The latter bias remained approximately constant when noise was introduced. Furthermore, the estimated uncertainties showed good agreement with the observed errors and the variations within each ROI, highlighting their potential value for assessing the reliability of the resulting PDFF maps.
Page 14 of 1601593 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.