Sort by:
Page 14 of 42417 results

Latent Space Consistency for Sparse-View CT Reconstruction

Duoyou Chen, Yunqing Chen, Can Zhang, Zhou Wang, Cheng Chen, Ruoxiu Xiao

arxiv logopreprintJul 15 2025
Computed Tomography (CT) is a widely utilized imaging modality in clinical settings. Using densely acquired rotational X-ray arrays, CT can capture 3D spatial features. However, it is confronted with challenged such as significant time consumption and high radiation exposure. CT reconstruction methods based on sparse-view X-ray images have garnered substantial attention from researchers as they present a means to mitigate costs and risks. In recent years, diffusion models, particularly the Latent Diffusion Model (LDM), have demonstrated promising potential in the domain of 3D CT reconstruction. Nonetheless, due to the substantial differences between the 2D latent representation of X-ray modalities and the 3D latent representation of CT modalities, the vanilla LDM is incapable of achieving effective alignment within the latent space. To address this issue, we propose the Consistent Latent Space Diffusion Model (CLS-DM), which incorporates cross-modal feature contrastive learning to efficiently extract latent 3D information from 2D X-ray images and achieve latent space alignment between modalities. Experimental results indicate that CLS-DM outperforms classical and state-of-the-art generative models in terms of standard voxel-level metrics (PSNR, SSIM) on the LIDC-IDRI and CTSpine1K datasets. This methodology not only aids in enhancing the effectiveness and economic viability of sparse X-ray reconstructed CT but can also be generalized to other cross-modal transformation tasks, such as text-to-image synthesis. We have made our code publicly available at https://anonymous.4open.science/r/CLS-DM-50D6/ to facilitate further research and applications in other domains.

Interpretable Prediction of Lymph Node Metastasis in Rectal Cancer MRI Using Variational Autoencoders

Benjamin Keel, Aaron Quyn, David Jayne, Maryam Mohsin, Samuel D. Relton

arxiv logopreprintJul 15 2025
Effective treatment for rectal cancer relies on accurate lymph node metastasis (LNM) staging. However, radiological criteria based on lymph node (LN) size, shape and texture morphology have limited diagnostic accuracy. In this work, we investigate applying a Variational Autoencoder (VAE) as a feature encoder model to replace the large pre-trained Convolutional Neural Network (CNN) used in existing approaches. The motivation for using a VAE is that the generative model aims to reconstruct the images, so it directly encodes visual features and meaningful patterns across the data. This leads to a disentangled and structured latent space which can be more interpretable than a CNN. Models are deployed on an in-house MRI dataset with 168 patients who did not undergo neo-adjuvant treatment. The post-operative pathological N stage was used as the ground truth to evaluate model predictions. Our proposed model 'VAE-MLP' achieved state-of-the-art performance on the MRI dataset, with cross-validated metrics of AUC 0.86 +/- 0.05, Sensitivity 0.79 +/- 0.06, and Specificity 0.85 +/- 0.05. Code is available at: https://github.com/benkeel/Lymph_Node_Classification_MIUA.

Non-invasive liver fibrosis screening on CT images using radiomics.

Yoo JJ, Namdar K, Carey S, Fischer SE, McIntosh C, Khalvati F, Rogalla P

pubmed logopapersJul 15 2025
To develop a radiomics machine learning model for detecting liver fibrosis on CT images of the liver. With Ethics Board approval, 169 patients (68 women, 101 men; mean age, 51.2 years ± 14.7 [SD]) underwent an ultrasound-guided liver biopsy with simultaneous CT acquisitions without and following intravenous contrast material administration. Radiomic features were extracted from two regions of interest (ROIs) on the CT images, one placed at the biopsy site and another distant from the biopsy site. A development cohort, which was split further into training and validation cohorts across 100 trials, was used to determine the optimal combinations of contrast, normalization, machine learning model, and radiomic features for liver fibrosis detection based on their Area Under the Receiver Operating Characteristic curve (AUC) on the validation cohort. The optimal combinations were then used to develop one final liver fibrosis model which was evaluated on a test cohort. When averaging the AUC across all combinations, non-contrast enhanced (NC) CT (AUC, 0.6100; 95% CI: 0.5897, 0.6303) outperformed contrast-enhanced CT (AUC, 0.5680; 95% CI: 0.5471, 0.5890). The most effective model was found to be a logistic regression model with input features of maximum, energy, kurtosis, skewness, and small area high gray level emphasis extracted from non-contrast enhanced NC CT normalized using Gamma correction with γ = 1.5 (AUC, 0.7833; 95% CI: 0.7821, 0.7845). The presented radiomics-based logistic regression model holds promise as a non-invasive detection tool for subclinical, asymptomatic liver fibrosis. The model may serve as an opportunistic liver fibrosis screening tool when operated in the background during routine CT examinations covering liver parenchyma. The final liver fibrosis detection model is made publicly available at: https://github.com/IMICSLab/RadiomicsLiverFibrosisDetection .

Restore-RWKV: Efficient and Effective Medical Image Restoration with RWKV.

Yang Z, Li J, Zhang H, Zhao D, Wei B, Xu Y

pubmed logopapersJul 15 2025
Transformers have revolutionized medical image restoration, but the quadratic complexity still poses limitations for their application to high-resolution medical images. The recent advent of the Receptance Weighted Key Value (RWKV) model in the natural language processing field has attracted much attention due to its ability to process long sequences efficiently. To leverage its advanced design, we propose Restore-RWKV, the first RWKV-based model for medical image restoration. Since the original RWKV model is designed for 1D sequences, we make two necessary modifications for modeling spatial relations in 2D medical images. First, we present a recurrent WKV (Re-WKV) attention mechanism that captures global dependencies with linear computational complexity. Re-WKV incorporates bidirectional attention as basic for a global 16 receptive field and recurrent attention to effectively model 2D dependencies from various scan directions. Second, we develop an omnidirectional token shift (Omni-Shift) layer that enhances local dependencies by shifting tokens from all directions and across a wide context range. These adaptations make the proposed Restore-RWKV an efficient and effective model for medical image restoration. Even a lightweight variant of Restore-RWKV, with only 1.16 million parameters, achieves comparable or even superior results compared to existing state-of-the-art (SOTA) methods. Extensive experiments demonstrate that the resulting Restore-RWKV achieves SOTA performance across a range of medical image restoration tasks, including PET image synthesis, CT image denoising, MRI image superresolution, and all-in-one medical image restoration. Code is available at: https://github.com/Yaziwel/Restore-RWKV.

3D isotropic high-resolution fetal brain MRI reconstruction from motion corrupted thick data based on physical-informed unsupervised learning.

Wu J, Chen L, Li Z, Li X, Sun T, Wang L, Wang R, Wei H, Zhang Y

pubmed logopapersJul 15 2025
High-quality 3D fetal brain MRI reconstruction from motion-corrupted 2D slices is crucial for precise clinical diagnosis and advancing our understanding of fetal brain development. This necessitates reliable slice-to-volume registration (SVR) for motion correction and super-resolution reconstruction (SRR) techniques. Traditional approaches have their limitations, but deep learning (DL) offers the potential in enhancing SVR and SRR. However, most of DL methods require large-scale external 3D high-resolution (HR) training datasets, which is challenging in clinical fetal MRI. To address this issue, we propose an unsupervised iterative joint SVR and SRR DL framework for 3D isotropic HR volume reconstruction. Specifically, our method conceptualizes SVR as a function that maps a 2D slice and a 3D target volume to a rigid transformation matrix, aligning the slice to the underlying location within the target volume. This function is parameterized by a convolutional neural network, which is trained by minimizing the difference between the volume slicing at the predicted position and the actual input slice. For SRR, a decoding network embedded within a deep image prior framework, coupled with a comprehensive image degradation model, is used to produce the HR volume. The deep image prior framework offers a local consistency prior to guide the reconstruction of HR volumes. By performing a forward degradation model, the HR volume is optimized by minimizing the loss between the predicted slices and the acquired slices. Experiments on both large-magnitude motion-corrupted simulation data and clinical data have shown that our proposed method outperforms current state-of-the-art fetal brain reconstruction methods. The source code is available at https://github.com/DeepBMI/SUFFICIENT.

Automated multiclass segmentation of liver vessel structures in CT images using deep learning approaches: a liver surgery pre-planning tool.

Sarkar S, Rahmani M, Farnia P, Ahmadian A, Mozayani N

pubmed logopapersJul 14 2025
Accurate liver vessel segmentation is essential for effective liver surgery pre-planning, and reducing surgical risks since it enables the precise localization and extensive assessment of complex vessel structures. Manual liver vessel segmentation is a time-intensive process reliant on operator expertise and skill. The complex, tree-like architecture of hepatic and portal veins, which are interwoven and anatomically variable, further complicates this challenge. This study addresses these challenges by proposing the UNETR (U-Net Transformers) architecture for the multi-class segmentation of portal and hepatic veins in liver CT images. UNETR leverages a transformer-based encoder to effectively capture long-range dependencies, overcoming the limitations of convolutional neural networks (CNNs) in handling complex anatomical structures. The proposed method was evaluated on contrast-enhanced CT images from the IRCAD as well as a locally dataset developed from a hospital. On the local dataset, the UNETR model achieved Dice coefficients of 49.71% for portal veins, 69.39% for hepatic veins, and 76.74% for overall vessel segmentation, while reaching Dice coefficients of 62.54% for vessel segmentation on the IRCAD dataset. These results highlight the method's effectiveness in identifying complex vessel structures across diverse datasets. These findings underscore the critical role of advanced architectures and precise annotations in improving segmentation accuracy. This work provides a foundation for future advancements in automated liver surgery pre-planning, with the potential to enhance clinical outcomes significantly. The implementation code is available on GitHub: https://github.com/saharsarkar/Multiclass-Vessel-Segmentation .

A Clinically-Informed Framework for Evaluating Vision-Language Models in Radiology Report Generation: Taxonomy of Errors and Risk-Aware Metric

Guan, H., Hou, P. C., Hong, P., Wang, L., Zhang, W., Du, X., Zhou, Z., Zhou, L.

medrxiv logopreprintJul 14 2025
Recent advances in vision-language models (VLMs) have enabled automatic radiology report generation, yet current evaluation methods remain limited to general-purpose NLP metrics or coarse classification-based clinical scores. In this study, we propose a clinically informed evaluation framework for VLM-generated radiology reports that goes beyond traditional performance measures. We define a taxonomy of 12 radiology-specific error types, each annotated with clinical risk levels (low, medium, high) in collaboration with physicians. Using this framework, we conduct a comprehensive error analysis of three representative VLMs, i.e., DeepSeek VL2, CXR-LLaVA, and CheXagent, on 685 gold-standard, expert-annotated MIMIC-CXR cases. We further introduce a risk-aware evaluation metric, the Clinical Risk-weighted Error Score for Text-generation (CREST), to quantify safety impact. Our findings reveal critical model vulnerabilities, common error patterns, and condition-specific risk profiles, offering actionable insights for model development and deployment. This work establishes a safety-centric foundation for evaluating and improving medical report generation models. The source code of our evaluation framework, including CREST computation and error taxonomy analysis, is available at https://github.com/guanharry/VLM-CREST.

X-ray2CTPA: leveraging diffusion models to enhance pulmonary embolism classification.

Cahan N, Klang E, Aviram G, Barash Y, Konen E, Giryes R, Greenspan H

pubmed logopapersJul 14 2025
Chest X-rays or chest radiography (CXR), commonly used for medical diagnostics, typically enables limited imaging compared to computed tomography (CT) scans, which offer more detailed and accurate three-dimensional data, particularly contrast-enhanced scans like CT Pulmonary Angiography (CTPA). However, CT scans entail higher costs, greater radiation exposure, and are less accessible than CXRs. In this work, we explore cross-modal translation from a 2D low contrast-resolution X-ray input to a 3D high contrast and spatial-resolution CTPA scan. Driven by recent advances in generative AI, we introduce a novel diffusion-based approach to this task. We employ the synthesized 3D images in a classification framework and show improved AUC in a Pulmonary Embolism (PE) categorization task, using the initial CXR input. Furthermore, we evaluate the model's performance using quantitative metrics, ensuring diagnostic relevance of the generated images. The proposed method is generalizable and capable of performing additional cross-modality translations in medical imaging. It may pave the way for more accessible and cost-effective advanced diagnostic tools. The code for this project is available: https://github.com/NoaCahan/X-ray2CTPA .

Region Uncertainty Estimation for Medical Image Segmentation with Noisy Labels.

Han K, Wang S, Chen J, Qian C, Lyu C, Ma S, Qiu C, Sheng VS, Huang Q, Liu Z

pubmed logopapersJul 14 2025
The success of deep learning in 3D medical image segmentation hinges on training with a large dataset of fully annotated 3D volumes, which are difficult and time-consuming to acquire. Although recent foundation models (e.g., segment anything model, SAM) can utilize sparse annotations to reduce annotation costs, segmentation tasks involving organs and tissues with blurred boundaries remain challenging. To address this issue, we propose a region uncertainty estimation framework for Computed Tomography (CT) image segmentation using noisy labels. Specifically, we propose a sample-stratified training strategy that stratifies samples according to their varying quality labels, prioritizing confident and fine-grained information at each training stage. This sample-to-voxel level processing enables more reliable supervision information to propagate to noisy label data, thus effectively mitigating the impact of noisy annotations. Moreover, we further design a boundary-guided regional uncertainty estimation module that adapts sample hierarchical training to assist in evaluating sample confidence. Experiments conducted across multiple CT datasets demonstrate the superiority of our proposed method over several competitive approaches under various noise conditions. Our proposed reliable label propagation strategy not only significantly reduces the cost of medical image annotation and robust model training but also improves the segmentation performance in scenarios with imperfect annotations, thus paving the way towards the application of medical segmentation foundation models under low-resource and remote scenarios. Code will be available at https://github.com/KHan-UJS/NoisyLabel.

AI-Enhanced Pediatric Pneumonia Detection: A CNN-Based Approach Using Data Augmentation and Generative Adversarial Networks (GANs)

Abdul Manaf, Nimra Mughal

arxiv logopreprintJul 13 2025
Pneumonia is a leading cause of mortality in children under five, requiring accurate chest X-ray diagnosis. This study presents a machine learning-based Pediatric Chest Pneumonia Classification System to assist healthcare professionals in diagnosing pneumonia from chest X-ray images. The CNN-based model was trained on 5,863 labeled chest X-ray images from children aged 0-5 years from the Guangzhou Women and Children's Medical Center. To address limited data, we applied augmentation techniques (rotation, zooming, shear, horizontal flipping) and employed GANs to generate synthetic images, addressing class imbalance. The system achieved optimal performance using combined original, augmented, and GAN-generated data, evaluated through accuracy and F1 score metrics. The final model was deployed via a Flask web application, enabling real-time classification with probability estimates. Results demonstrate the potential of deep learning and GANs in improving diagnostic accuracy and efficiency for pediatric pneumonia classification, particularly valuable in resource-limited clinical settings https://github.com/AbdulManaf12/Pediatric-Chest-Pneumonia-Classification
Page 14 of 42417 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.