Sort by:
Page 14 of 73728 results

TextSAM-EUS: Text Prompt Learning for SAM to Accurately Segment Pancreatic Tumor in Endoscopic Ultrasound

Pascal Spiegler, Taha Koleilat, Arash Harirpoush, Corey S. Miller, Hassan Rivaz, Marta Kersten-Oertel, Yiming Xiao

arxiv logopreprintJul 24 2025
Pancreatic cancer carries a poor prognosis and relies on endoscopic ultrasound (EUS) for targeted biopsy and radiotherapy. However, the speckle noise, low contrast, and unintuitive appearance of EUS make segmentation of pancreatic tumors with fully supervised deep learning (DL) models both error-prone and dependent on large, expert-curated annotation datasets. To address these challenges, we present TextSAM-EUS, a novel, lightweight, text-driven adaptation of the Segment Anything Model (SAM) that requires no manual geometric prompts at inference. Our approach leverages text prompt learning (context optimization) through the BiomedCLIP text encoder in conjunction with a LoRA-based adaptation of SAM's architecture to enable automatic pancreatic tumor segmentation in EUS, tuning only 0.86% of the total parameters. On the public Endoscopic Ultrasound Database of the Pancreas, TextSAM-EUS with automatic prompts attains 82.69% Dice and 85.28% normalized surface distance (NSD), and with manual geometric prompts reaches 83.10% Dice and 85.70% NSD, outperforming both existing state-of-the-art (SOTA) supervised DL models and foundation models (e.g., SAM and its variants). As the first attempt to incorporate prompt learning in SAM-based medical image segmentation, TextSAM-EUS offers a practical option for efficient and robust automatic EUS segmentation.

TextSAM-EUS: Text Prompt Learning for SAM to Accurately Segment Pancreatic Tumor in Endoscopic Ultrasound

Pascal Spiegler, Taha Koleilat, Arash Harirpoush, Corey S. Miller, Hassan Rivaz, Marta Kersten-Oertel, Yiming Xiao

arxiv logopreprintJul 24 2025
Pancreatic cancer carries a poor prognosis and relies on endoscopic ultrasound (EUS) for targeted biopsy and radiotherapy. However, the speckle noise, low contrast, and unintuitive appearance of EUS make segmentation of pancreatic tumors with fully supervised deep learning (DL) models both error-prone and dependent on large, expert-curated annotation datasets. To address these challenges, we present TextSAM-EUS, a novel, lightweight, text-driven adaptation of the Segment Anything Model (SAM) that requires no manual geometric prompts at inference. Our approach leverages text prompt learning (context optimization) through the BiomedCLIP text encoder in conjunction with a LoRA-based adaptation of SAM's architecture to enable automatic pancreatic tumor segmentation in EUS, tuning only 0.86% of the total parameters. On the public Endoscopic Ultrasound Database of the Pancreas, TextSAM-EUS with automatic prompts attains 82.69% Dice and 85.28% normalized surface distance (NSD), and with manual geometric prompts reaches 83.10% Dice and 85.70% NSD, outperforming both existing state-of-the-art (SOTA) supervised DL models and foundation models (e.g., SAM and its variants). As the first attempt to incorporate prompt learning in SAM-based medical image segmentation, TextSAM-EUS offers a practical option for efficient and robust automatic EUS segmentation. Code is available at https://github.com/HealthX-Lab/TextSAM-EUS .

Development of a deep learning model for T1N0 gastric cancer diagnosis using 2.5D radiomic data in preoperative CT images.

He J, Xu J, Chen W, Cao M, Zhang J, Yang Q, Li E, Zhang R, Tong Y, Zhang Y, Gao C, Zhao Q, Xu Z, Wang L, Cheng X, Zheng G, Pan S, Hu C

pubmed logopapersJul 23 2025
Early detection and precise preoperative staging of early gastric cancer (EGC) are critical. Therefore, this study aims to develop a deep learning model using portal venous phase CT images to accurately distinguish EGC without lymph node metastasis. This study included 3164 patients with gastric cancer (GC) who underwent radical surgery at two medical centers in China from 2006 to 2019. Moreover, 2.5D radiomic data and multi-instance learning (MIL) were novel approaches applied in this study. By basing the selection of features on 2.5D radiomic data and MIL, the ResNet101 model combined with the XGBoost model represented a satisfactory performance for diagnosing pT1N0 GC. Furthermore, the 2.5D MIL-based model demonstrated a markedly superior predictive performance compared to traditional radiomics models and clinical models. We first constructed a deep learning prediction model based on 2.5D radiomics and MIL for effectively diagnosing pT1N0 GC patients, which provides valuable information for the individualized treatment selection.

Preoperative MRI-based radiomics analysis of intra- and peritumoral regions for predicting CD3 expression in early cervical cancer.

Zhang R, Jiang C, Li F, Li L, Qin X, Yang J, Lv H, Ai T, Deng L, Huang C, Xing H, Wu F

pubmed logopapersJul 23 2025
The study investigates the correlation between CD3 T-cell expression levels and cervical cancer (CC) while developing a magnetic resonance (MR) imaging-based radiomics model for preoperative prediction of CD3 T-cell expression levels. Prognostic correlations between CD3D, CD3E, and CD3G gene expressions and various cancers were analyzed using the Cancer Genome Atlas (TCGA) database. Protein-protein interaction (PPI) analysis via the STRING database identified associations between these genes and T lymphocyte activity. Gene Set Enrichment Analysis (GSEA) revealed immune pathway enrichment by categorizing genes based on CD3D expression levels. Correlations between immune checkpoint molecules and CD3 complex genes were also assessed. The study retrospectively included 202 patients with pathologically confirmed early-stage CC who underwent preoperative MRI, divided into training and test groups. Radiomic features were extracted from the whole-lesion tumor region of interest (ROI<sub>tumor</sub>) and from peritumoral regions with 3 mm and 5 mm margins (ROI<sub>3mm</sub> and ROI<sub>5mm</sub>, respectively). Various machine learning algorithms, including Support Vector Machine (SVM), Logistic Regression, Random Forest, AdaBoost, and Decision Tree, were used to construct radiomics models based on different ROIs, and diagnostic performances were compared to identify the optimal approach. The best-performing algorithm was combined with intra- and peritumoral features and clinically relevant independent risk factors to develop a comprehensive predictive model. Analysis of the TCGA database demonstrated significant associations between CD3D, CD3E, and CD3G expressions and several cancers, including CC (p < 0.05). PPI analysis highlighted connections between these genes and T lymphocyte function, while GSEA indicated enrichment of immune-related pathways linked to CD3D. Immune checkpoint correlations showed positive associations with CD3 complex genes. Radiomics analysis selected 18 features from ROI<sub>tumor</sub> and ROI<sub>3mm</sub> across MRI sequences. The SVM algorithm achieved the highest predictive performance for CD3 T-cell expression status, with an area under the curve (AUC) of 0.93 in the training group and 0.92 in the test group. This MR-based radiomics model effectively predicts CD3 expression status in patients with early-stage CC, offering a non-invasive tool for preoperative assessment of CD3 expression, but its clinical utility needs further prospective validation.

Synthetic data trained open-source language models are feasible alternatives to proprietary models for radiology reporting.

Pandita A, Keniston A, Madhuripan N

pubmed logopapersJul 23 2025
The study assessed the feasibility of using synthetic data to fine-tune various open-source LLMs for free text to structured data conversation in radiology, comparing their performance with GPT models. A training set of 3000 synthetic thyroid nodule dictations was generated to train six open-source models (Starcoderbase-1B, Starcoderbase-3B, Mistral-7B, Llama-3-8B, Llama-2-13B, and Yi-34B). ACR TI-RADS template was the target model output. The model performance was tested on 50 thyroid nodule dictations from MIMIC-III patient dataset and compared against 0-shot, 1-shot, and 5-shot performance of GPT-3.5 and GPT-4. GPT-4 5-shot and Yi-34B showed the highest performance with no statistically significant difference between the models. Various open models outperformed GPT models with statistical significance. Overall, models trained with synthetic data showed performance comparable to GPT models in structured text conversion in our study. Given privacy preserving advantages, open LLMs can be utilized as a viable alternative to proprietary GPT models.

CT-based intratumoral and peritumoral radiomics to predict the treatment response to hepatic arterial infusion chemotherapy plus lenvatinib and PD-1 in high-risk hepatocellular carcinoma cases: a multi-center study.

Liu Z, Li X, Huang Y, Chang X, Zhang H, Wu X, Diao Y, He F, Sun J, Feng B, Liang H

pubmed logopapersJul 23 2025
Noninvasive and precise tools for treatment response estimation in patients with high-risk hepatocellular carcinoma (HCC) who could benefit from hepatic arterial infusion chemotherapy (HAIC) plus lenvatinib and humanized programmed death receptor-1 inhibitors (PD-1) (HAIC-LEN-PD1) are lacking. This study aimed to evaluate the predictive potential of intratumoral and peritumoral radiomics for preoperative treatment response assessment to HAIC-LEN-PD1 in high-risk HCC cases. Totally 630 high-risk HCC cases administered HAIC-LEN-PD1 at three institutions were retrospectively identified and assigned to training, validation and external test sets. Totally 1834 radiomic features were, respectively, obtained from intratumoral and peritumoral regions and radiomics models were established using five classifiers. Based on the optimal model, a nomogram was developed and evaluated using areas under the curves (AUCs), calibration curves and decision curve analysis (DCA). Overall survival (OS) and progression-free survival (PFS) were assessed by Kaplan-Meier curves. The Intratumoral + Peritumoral 10 mm (Intra + Peri10) radiomics models were superior to the intratumor models and peritumor models, with AUCs of 0.919 (95%CI 0.889-0.949) in the training set, 0.874 (95%CI 0.812-0.936) in validation set and 0.893 (95%CI 0.839-0.948) in external test sets. The nomogram had good calibration ability and clinical value, with the AUCs of 0.936 (95%CI 0.907-0.965) in the training set, 0.878 (95%CI 0.916-0.940) in validation set and 0.902 (95%CI 0.848-0.957) in external test sets. The Kaplan-Meier analysis showed that high-score patients had significantly shorter OS and PFS than the low-score patients (median OS: 11.7 vs. 29.6 months, the whole set, p < 0.001; median PFS: 6.0 vs. 12.0 months, the whole set, p < 0.001). The Intra + Peri10 model can effectively predict the treatment response of high-risk HCC cases administered HAIC-LEN-PD1. The nomogram could provide an effective tool to evaluate the treatment response and risk stratification.

Benchmarking of Deep Learning Methods for Generic MRI Multi-OrganAbdominal Segmentation

Deepa Krishnaswamy, Cosmin Ciausu, Steve Pieper, Ron Kikinis, Benjamin Billot, Andrey Fedorov

arxiv logopreprintJul 23 2025
Recent advances in deep learning have led to robust automated tools for segmentation of abdominal computed tomography (CT). Meanwhile, segmentation of magnetic resonance imaging (MRI) is substantially more challenging due to the inherent signal variability and the increased effort required for annotating training datasets. Hence, existing approaches are trained on limited sets of MRI sequences, which might limit their generalizability. To characterize the landscape of MRI abdominal segmentation tools, we present here a comprehensive benchmarking of the three state-of-the-art and open-source models: MRSegmentator, MRISegmentator-Abdomen, and TotalSegmentator MRI. Since these models are trained using labor-intensive manual annotation cycles, we also introduce and evaluate ABDSynth, a SynthSeg-based model purely trained on widely available CT segmentations (no real images). More generally, we assess accuracy and generalizability by leveraging three public datasets (not seen by any of the evaluated methods during their training), which span all major manufacturers, five MRI sequences, as well as a variety of subject conditions, voxel resolutions, and fields-of-view. Our results reveal that MRSegmentator achieves the best performance and is most generalizable. In contrast, ABDSynth yields slightly less accurate results, but its relaxed requirements in training data make it an alternative when the annotation budget is limited. The evaluation code and datasets are given for future benchmarking at https://github.com/deepakri201/AbdoBench, along with inference code and weights for ABDSynth.

Deep Learning-Based Prediction of Microvascular Invasion and Survival Outcomes in Hepatocellular Carcinoma Using Dual-phase CT Imaging of Tumors and Lesser Omental Adipose: A Multicenter Study.

Miao S, Sun M, Li X, Wang M, Jiang Y, Liu Z, Wang Q, Ding X, Wang R

pubmed logopapersJul 23 2025
Accurate preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) remains challenging. Current imaging biomarkers show limited predictive performance. To develop a deep learning model based on preoperative multiphase CT images of tumors and lesser omental adipose tissue (LOAT) for predicting MVI status and to analyze associated survival outcomes. This retrospective study included pathologically confirmed HCC patients from two medical centers between 2016 and 2023. A dual-branch feature fusion model based on ResNet18 was constructed, which extracted fused features from dual-phase CT images of both tumors and LOAT. The model's performance was evaluated on both internal and external test sets. Logistic regression was used to identify independent predictors of MVI. Based on MVI status, patients in the training, internal test, and external test cohorts were stratified into high- and low-risk groups, and overall survival differences were analyzed. The model incorporating LOAT features outperformed the tumor-only modality, achieving an AUC of 0.889 (95% CI: [0.882, 0.962], P=0.004) in the internal test set and 0.826 (95% CI: [0.793, 0.872], P=0.006) in the external test set. Both results surpassed the independent diagnoses of three radiologists (average AUC=0.772). Multivariate logistic regression confirmed that maximum tumor diameter and LOAT area were independent predictors of MVI. Further Cox regression analysis showed that MVI-positive patients had significantly increased mortality risks in both the internal test set (Hazard Ratio [HR]=2.246, 95% CI: [1.088, 4.637], P=0.029) and external test set (HR=3.797, 95% CI: [1.262, 11.422], P=0.018). This study is the first to use a deep learning framework integrating LOAT and tumor imaging features, improving preoperative MVI risk stratification accuracy. Independent prognostic value of LOAT has been validated in multicenter cohorts, highlighting its potential to guide personalized surgical planning.

Benchmarking of Deep Learning Methods for Generic MRI Multi-Organ Abdominal Segmentation

Deepa Krishnaswamy, Cosmin Ciausu, Steve Pieper, Ron Kikinis, Benjamin Billot, Andrey Fedorov

arxiv logopreprintJul 23 2025
Recent advances in deep learning have led to robust automated tools for segmentation of abdominal computed tomography (CT). Meanwhile, segmentation of magnetic resonance imaging (MRI) is substantially more challenging due to the inherent signal variability and the increased effort required for annotating training datasets. Hence, existing approaches are trained on limited sets of MRI sequences, which might limit their generalizability. To characterize the landscape of MRI abdominal segmentation tools, we present here a comprehensive benchmarking of the three state-of-the-art and open-source models: MRSegmentator, MRISegmentator-Abdomen, and TotalSegmentator MRI. Since these models are trained using labor-intensive manual annotation cycles, we also introduce and evaluate ABDSynth, a SynthSeg-based model purely trained on widely available CT segmentations (no real images). More generally, we assess accuracy and generalizability by leveraging three public datasets (not seen by any of the evaluated methods during their training), which span all major manufacturers, five MRI sequences, as well as a variety of subject conditions, voxel resolutions, and fields-of-view. Our results reveal that MRSegmentator achieves the best performance and is most generalizable. In contrast, ABDSynth yields slightly less accurate results, but its relaxed requirements in training data make it an alternative when the annotation budget is limited. The evaluation code and datasets are given for future benchmarking at https://github.com/deepakri201/AbdoBench, along with inference code and weights for ABDSynth.

Interpretable Deep Learning Approaches for Reliable GI Image Classification: A Study with the HyperKvasir Dataset

Wahid, S. B., Rothy, Z. T., News, R. K., Rieyan, S. A.

medrxiv logopreprintJul 23 2025
Deep learning has emerged as a promising tool for automating gastrointestinal (GI) disease diagnosis. However, multi-class GI disease classification remains underexplored. This study addresses this gap by presenting a framework that uses advanced models like InceptionNetV3 and ResNet50, combined with boosting algorithms (XGB, LGBM), to classify lower GI abnormalities. InceptionNetV3 with XGB achieved the best recall of 0.81 and an F1 score of 0.90. To assist clinicians in understanding model decisions, the Grad-CAM technique, a form of explainable AI, was employed to highlight the critical regions influencing predictions, fostering trust in these systems. This approach significantly improves both the accuracy and reliability of GI disease diagnosis.
Page 14 of 73728 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.