Sort by:
Page 139 of 1621612 results

Standardizing Heterogeneous MRI Series Description Metadata Using Large Language Models.

Kamel PI, Doo FX, Savani D, Kanhere A, Yi PH, Parekh VS

pubmed logopapersMay 29 2025
MRI metadata, particularly free-text series descriptions (SDs) used to identify sequences, are highly heterogeneous due to variable inputs by manufacturers and technologists. This variability poses challenges in correctly identifying series for hanging protocols and dataset curation. The purpose of this study was to evaluate the ability of large language models (LLMs) to automatically classify MRI SDs. We analyzed non-contrast brain MRIs performed between 2016 and 2022 at our institution, identifying all unique SDs in the metadata. A practicing neuroradiologist manually classified the SD text into: "T1," "T2," "T2/FLAIR," "SWI," "DWI," ADC," or "Other." Then, various LLMs, including GPT 3.5 Turbo, GPT-4, GPT-4o, Llama 3 8b, and Llama 3 70b, were asked to classify each SD into one of the sequence categories. Model performances were compared to ground truth classification using area under the curve (AUC) as the primary metric. Additionally, GPT-4o was tasked with generating regular expression templates to match each category. In 2510 MRI brain examinations, there were 1395 unique SDs, with 727/1395 (52.1%) appearing only once, indicating high variability. GPT-4o demonstrated the highest performance, achieving an average AUC of 0.983 ± 0.020 for all series with detailed prompting. GPT models significantly outperformed Llama models, with smaller differences within the GPT family. Regular expression generation was inconsistent, demonstrating an average AUC of 0.774 ± 0.161 for all sequences. Our findings suggest that LLMs are effective for interpreting and standardizing heterogeneous MRI SDs.

Estimating Head Motion in Structural MRI Using a Deep Neural Network Trained on Synthetic Artifacts

Charles Bricout, Samira Ebrahimi Kahou, Sylvain Bouix

arxiv logopreprintMay 29 2025
Motion-related artifacts are inevitable in Magnetic Resonance Imaging (MRI) and can bias automated neuroanatomical metrics such as cortical thickness. Manual review cannot objectively quantify motion in anatomical scans, and existing automated approaches often require specialized hardware or rely on unbalanced noisy training data. Here, we train a 3D convolutional neural network to estimate motion severity using only synthetically corrupted volumes. We validate our method with one held-out site from our training cohort and with 14 fully independent datasets, including one with manual ratings, achieving a representative $R^2 = 0.65$ versus manual labels and significant thickness-motion correlations in 12/15 datasets. Furthermore, our predicted motion correlates with subject age in line with prior studies. Our approach generalizes across scanner brands and protocols, enabling objective, scalable motion assessment in structural MRI studies without prospective motion correction.

Self-supervised feature learning for cardiac Cine MR image reconstruction

Siying Xu, Marcel Früh, Kerstin Hammernik, Andreas Lingg, Jens Kübler, Patrick Krumm, Daniel Rueckert, Sergios Gatidis, Thomas Küstner

arxiv logopreprintMay 29 2025
We propose a self-supervised feature learning assisted reconstruction (SSFL-Recon) framework for MRI reconstruction to address the limitation of existing supervised learning methods. Although recent deep learning-based methods have shown promising performance in MRI reconstruction, most require fully-sampled images for supervised learning, which is challenging in practice considering long acquisition times under respiratory or organ motion. Moreover, nearly all fully-sampled datasets are obtained from conventional reconstruction of mildly accelerated datasets, thus potentially biasing the achievable performance. The numerous undersampled datasets with different accelerations in clinical practice, hence, remain underutilized. To address these issues, we first train a self-supervised feature extractor on undersampled images to learn sampling-insensitive features. The pre-learned features are subsequently embedded in the self-supervised reconstruction network to assist in removing artifacts. Experiments were conducted retrospectively on an in-house 2D cardiac Cine dataset, including 91 cardiovascular patients and 38 healthy subjects. The results demonstrate that the proposed SSFL-Recon framework outperforms existing self-supervised MRI reconstruction methods and even exhibits comparable or better performance to supervised learning up to $16\times$ retrospective undersampling. The feature learning strategy can effectively extract global representations, which have proven beneficial in removing artifacts and increasing generalization ability during reconstruction.

Comparative assessment of fairness definitions and bias mitigation strategies in machine learning-based diagnosis of Alzheimer's disease from MR images

Maria Eleftheria Vlontzou, Maria Athanasiou, Christos Davatzikos, Konstantina S. Nikita

arxiv logopreprintMay 29 2025
The present study performs a comprehensive fairness analysis of machine learning (ML) models for the diagnosis of Mild Cognitive Impairment (MCI) and Alzheimer's disease (AD) from MRI-derived neuroimaging features. Biases associated with age, race, and gender in a multi-cohort dataset, as well as the influence of proxy features encoding these sensitive attributes, are investigated. The reliability of various fairness definitions and metrics in the identification of such biases is also assessed. Based on the most appropriate fairness measures, a comparative analysis of widely used pre-processing, in-processing, and post-processing bias mitigation strategies is performed. Moreover, a novel composite measure is introduced to quantify the trade-off between fairness and performance by considering the F1-score and the equalized odds ratio, making it appropriate for medical diagnostic applications. The obtained results reveal the existence of biases related to age and race, while no significant gender bias is observed. The deployed mitigation strategies yield varying improvements in terms of fairness across the different sensitive attributes and studied subproblems. For race and gender, Reject Option Classification improves equalized odds by 46% and 57%, respectively, and achieves harmonic mean scores of 0.75 and 0.80 in the MCI versus AD subproblem, whereas for age, in the same subproblem, adversarial debiasing yields the highest equalized odds improvement of 40% with a harmonic mean score of 0.69. Insights are provided into how variations in AD neuropathology and risk factors, associated with demographic characteristics, influence model fairness.

Menopausal hormone therapy and the female brain: Leveraging neuroimaging and prescription registry data from the UK Biobank cohort.

Barth C, Galea LAM, Jacobs EG, Lee BH, Westlye LT, de Lange AG

pubmed logopapersMay 29 2025
Menopausal hormone therapy (MHT) is generally thought to be neuroprotective, yet results have been inconsistent. Here, we present a comprehensive study of MHT use and brain characteristics in females from the UK Biobank. 19,846 females with magnetic resonance imaging data were included. Detailed MHT prescription data from primary care records was available for 538. We tested for associations between the brain measures (i.e. gray/white matter brain age, hippocampal volumes, white matter hyperintensity volumes) and MHT user status, age at first and last use, duration of use, formulation, route of administration, dosage, type, and active ingredient. We further tested for the effects of a history of hysterectomy ± bilateral oophorectomy among MHT users and examined associations by APOE ε4 status. Current MHT users, not past users, showed older gray and white matter brain age, with a difference of up to 9 mo, and smaller hippocampal volumes compared to never-users. Longer duration of use and older age at last use post-menopause was associated with older gray and white matter brain age, larger white matter hyperintensity volume, and smaller hippocampal volumes. MHT users with a history of hysterectomy ± bilateral oophorectomy showed <i>younger</i> gray matter brain age relative to MHT users without such history. We found no associations by APOE ε4 status and with other MHT variables. Our results indicate that population-level associations between MHT use and female brain health might vary depending on duration of use and past surgical history. The authors received funding from the Research Council of Norway (LTW: 223273, 249795, 273345, 298646, 300768), the South-Eastern Norway Regional Health Authority (CB: 2023037, 2022103; LTW: 2018076, 2019101), the European Research Council under the European Union's Horizon 2020 research and innovation program (LTW: 802998), the Swiss National Science Foundation (AMGdL: PZ00P3_193658), the Canadian Institutes for Health Research (LAMG: PJT-173554), the Treliving Family Chair in Women's Mental Health at the Centre for Addiction and Mental Health (LAMG), womenmind at the Centre for Addiction and Mental Health (LAMG, BHL), the Ann S. Bowers Women's Brain Health Initiative (EGJ), and the National Institutes of Health (EGJ: AG063843).

Single Domain Generalization for Alzheimer's Detection from 3D MRIs with Pseudo-Morphological Augmentations and Contrastive Learning

Zobia Batool, Huseyin Ozkan, Erchan Aptoula

arxiv logopreprintMay 28 2025
Although Alzheimer's disease detection via MRIs has advanced significantly thanks to contemporary deep learning models, challenges such as class imbalance, protocol variations, and limited dataset diversity often hinder their generalization capacity. To address this issue, this article focuses on the single domain generalization setting, where given the data of one domain, a model is designed and developed with maximal performance w.r.t. an unseen domain of distinct distribution. Since brain morphology is known to play a crucial role in Alzheimer's diagnosis, we propose the use of learnable pseudo-morphological modules aimed at producing shape-aware, anatomically meaningful class-specific augmentations in combination with a supervised contrastive learning module to extract robust class-specific representations. Experiments conducted across three datasets show improved performance and generalization capacity, especially under class imbalance and imaging protocol variations. The source code will be made available upon acceptance at https://github.com/zobia111/SDG-Alzheimer.

Large Scale MRI Collection and Segmentation of Cirrhotic Liver.

Jha D, Susladkar OK, Gorade V, Keles E, Antalek M, Seyithanoglu D, Cebeci T, Aktas HE, Kartal GD, Kaymakoglu S, Erturk SM, Velichko Y, Ladner DP, Borhani AA, Medetalibeyoglu A, Durak G, Bagci U

pubmed logopapersMay 28 2025
Liver cirrhosis represents the end stage of chronic liver disease, characterized by extensive fibrosis and nodular regeneration that significantly increases mortality risk. While magnetic resonance imaging (MRI) offers a non-invasive assessment, accurately segmenting cirrhotic livers presents substantial challenges due to morphological alterations and heterogeneous signal characteristics. Deep learning approaches show promise for automating these tasks, but progress has been limited by the absence of large-scale, annotated datasets. Here, we present CirrMRI600+, the first comprehensive dataset comprising 628 high-resolution abdominal MRI scans (310 T1-weighted and 318 T2-weighted sequences, totaling nearly 40,000 annotated slices) with expert-validated segmentation labels for cirrhotic livers. The dataset includes demographic information, clinical parameters, and histopathological validation where available. Additionally, we provide benchmark results from 11 state-of-the-art deep learning experiments to establish performance standards. CirrMRI600+ enables the development and validation of advanced computational methods for cirrhotic liver analysis, potentially accelerating progress toward automated Cirrhosis visual staging and personalized treatment planning.

Operationalizing postmortem pathology-MRI association studies in Alzheimer's disease and related disorders with MRI-guided histology sampling.

Athalye C, Bahena A, Khandelwal P, Emrani S, Trotman W, Levorse LM, Khodakarami Z, Ohm DT, Teunissen-Bermeo E, Capp N, Sadaghiani S, Arezoumandan S, Lim SA, Prabhakaran K, Ittyerah R, Robinson JL, Schuck T, Lee EB, Tisdall MD, Das SR, Wolk DA, Irwin DJ, Yushkevich PA

pubmed logopapersMay 28 2025
Postmortem neuropathological examination, while the gold standard for diagnosing neurodegenerative diseases, often relies on limited regional sampling that may miss critical areas affected by Alzheimer's disease and related disorders. Ultra-high resolution postmortem MRI can help identify regions that fall outside the diagnostic sampling criteria for additional histopathologic evaluation. However, there are no standardized guidelines for integrating histology and MRI in a traditional brain bank. We developed a comprehensive protocol for whole hemisphere postmortem 7T MRI-guided histopathological sampling with whole-slide digital imaging and histopathological analysis, providing a reliable pipeline for high-volume brain banking in heterogeneous brain tissue. Our method uses patient-specific 3D printed molds built from postmortem MRI, allowing standardized tissue processing with a permanent spatial reference frame. To facilitate pathology-MRI association studies, we created a semi-automated MRI to histology registration pipeline and developed a quantitative pathology scoring system using weakly supervised deep learning. We validated this protocol on a cohort of 29 brains with diagnosis on the AD spectrum that revealed correlations between cortical thickness and phosphorylated tau accumulation. This pipeline has broad applicability across neuropathological research and brain banking, facilitating large-scale studies that integrate histology with neuroimaging. The innovations presented here provide a scalable and reproducible approach to studying postmortem brain pathology, with implications for advancing diagnostic and therapeutic strategies for Alzheimer's disease and related disorders.

Image analysis research in neuroradiology: bridging clinical and technical domains.

Pareto D, Naval-Baudin P, Pons-Escoda A, Bargalló N, Garcia-Gil M, Majós C, Rovira À

pubmed logopapersMay 28 2025
Advancements in magnetic resonance imaging (MRI) analysis over the past decades have significantly reshaped the field of neuroradiology. The ability to extract multiple quantitative measures from each MRI scan, alongside the development of extensive data repositories, has been fundamental to the emergence of advanced methodologies such as radiomics and artificial intelligence (AI). This educational review aims to delineate the importance of image analysis, highlight key paradigm shifts, examine their implications, and identify existing constraints that must be addressed to facilitate integration into clinical practice. Particular attention is given to aiding junior neuroradiologists in navigating this complex and evolving landscape. A comprehensive review of the available analysis toolboxes was conducted, focusing on major technological advancements in MRI analysis, the evolution of data repositories, and the rise of AI and radiomics in neuroradiology. Stakeholders within the field were identified and their roles examined. Additionally, current challenges and barriers to clinical implementation were analyzed. The analysis revealed several pivotal shifts, including the transition from qualitative to quantitative imaging, the central role of large datasets in developing AI tools, and the growing importance of interdisciplinary collaboration. Key stakeholders-including academic institutions, industry partners, regulatory bodies, and clinical practitioners-were identified, each playing a distinct role in advancing the field. However, significant barriers remain, particularly regarding standardization, data sharing, regulatory approval, and integration into clinical workflows. While advancements in MRI analysis offer tremendous potential to enhance neuroradiology practice, realizing this potential requires overcoming technical, regulatory, and practical barriers. Education and structured support for junior neuroradiologists are essential to ensure they are well-equipped to participate in and drive future developments. A coordinated effort among stakeholders is crucial to facilitate the seamless translation of these technological innovations into everyday clinical practice.

Patch-based Reconstruction for Unsupervised Dynamic MRI using Learnable Tensor Function with Implicit Neural Representation

Yuanyuan Liu, Yuanbiao Yang, Zhuo-Xu Cui, Qingyong Zhu, Jing Cheng, Congcong Liu, Jinwen Xie, Jingran Xu, Hairong Zheng, Dong Liang, Yanjie Zhu

arxiv logopreprintMay 28 2025
Dynamic MRI plays a vital role in clinical practice by capturing both spatial details and dynamic motion, but its high spatiotemporal resolution is often limited by long scan times. Deep learning (DL)-based methods have shown promising performance in accelerating dynamic MRI. However, most existing algorithms rely on large fully-sampled datasets for training, which are difficult to acquire. Recently, implicit neural representation (INR) has emerged as a powerful scan-specific paradigm for accelerated MRI, which models signals as a continuous function over spatiotemporal coordinates. Although this approach achieves efficient continuous modeling of dynamic images and robust reconstruction, it faces challenges in recovering fine details and increasing computational demands for high dimensional data representation. To enhance both efficiency and reconstruction quality, we propose TenF-INR, a novel patch-based unsupervised framework that employs INR to model bases of tensor decomposition, enabling efficient and accurate modeling of dynamic MR images with learnable tensor functions. By exploiting strong correlations in similar spatial image patches and in the temporal direction, TenF-INR enforces multidimensional low-rankness and implements patch-based reconstruction with the benefits of continuous modeling. We compare TenF-INR with state-of-the-art methods, including supervised DL methods and unsupervised approaches. Experimental results demonstrate that TenF-INR achieves high acceleration factors up to 21, outperforming all comparison methods in image quality, temporal fidelity, and quantitative metrics, even surpassing the supervised methods.
Page 139 of 1621612 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.