Sort by:
Page 139 of 1401393 results

Enhancing efficient deep learning models with multimodal, multi-teacher insights for medical image segmentation.

Hossain KF, Kamran SA, Ong J, Tavakkoli A

pubmed logopapersMay 7 2025
The rapid evolution of deep learning has dramatically enhanced the field of medical image segmentation, leading to the development of models with unprecedented accuracy in analyzing complex medical images. Deep learning-based segmentation holds significant promise for advancing clinical care and enhancing the precision of medical interventions. However, these models' high computational demand and complexity present significant barriers to their application in resource-constrained clinical settings. To address this challenge, we introduce Teach-Former, a novel knowledge distillation (KD) framework that leverages a Transformer backbone to effectively condense the knowledge of multiple teacher models into a single, streamlined student model. Moreover, it excels in the contextual and spatial interpretation of relationships across multimodal images for more accurate and precise segmentation. Teach-Former stands out by harnessing multimodal inputs (CT, PET, MRI) and distilling the final predictions and the intermediate attention maps, ensuring a richer spatial and contextual knowledge transfer. Through this technique, the student model inherits the capacity for fine segmentation while operating with a significantly reduced parameter set and computational footprint. Additionally, introducing a novel training strategy optimizes knowledge transfer, ensuring the student model captures the intricate mapping of features essential for high-fidelity segmentation. The efficacy of Teach-Former has been effectively tested on two extensive multimodal datasets, HECKTOR21 and PI-CAI22, encompassing various image types. The results demonstrate that our KD strategy reduces the model complexity and surpasses existing state-of-the-art methods to achieve superior performance. The findings of this study indicate that the proposed methodology could facilitate efficient segmentation of complex multimodal medical images, supporting clinicians in achieving more precise diagnoses and comprehensive monitoring of pathological conditions ( https://github.com/FarihaHossain/TeachFormer ).

From Pixels to Polygons: A Survey of Deep Learning Approaches for Medical Image-to-Mesh Reconstruction

Fengming Lin, Arezoo Zakeri, Yidan Xue, Michael MacRaild, Haoran Dou, Zherui Zhou, Ziwei Zou, Ali Sarrami-Foroushani, Jinming Duan, Alejandro F. Frangi

arxiv logopreprintMay 6 2025
Deep learning-based medical image-to-mesh reconstruction has rapidly evolved, enabling the transformation of medical imaging data into three-dimensional mesh models that are critical in computational medicine and in silico trials for advancing our understanding of disease mechanisms, and diagnostic and therapeutic techniques in modern medicine. This survey systematically categorizes existing approaches into four main categories: template models, statistical models, generative models, and implicit models. Each category is analysed in detail, examining their methodological foundations, strengths, limitations, and applicability to different anatomical structures and imaging modalities. We provide an extensive evaluation of these methods across various anatomical applications, from cardiac imaging to neurological studies, supported by quantitative comparisons using standard metrics. Additionally, we compile and analyze major public datasets available for medical mesh reconstruction tasks and discuss commonly used evaluation metrics and loss functions. The survey identifies current challenges in the field, including requirements for topological correctness, geometric accuracy, and multi-modality integration. Finally, we present promising future research directions in this domain. This systematic review aims to serve as a comprehensive reference for researchers and practitioners in medical image analysis and computational medicine.

STG: Spatiotemporal Graph Neural Network with Fusion and Spatiotemporal Decoupling Learning for Prognostic Prediction of Colorectal Cancer Liver Metastasis

Yiran Zhu, Wei Yang, Yan su, Zesheng Li, Chengchang Pan, Honggang Qi

arxiv logopreprintMay 6 2025
We propose a multimodal spatiotemporal graph neural network (STG) framework to predict colorectal cancer liver metastasis (CRLM) progression. Current clinical models do not effectively integrate the tumor's spatial heterogeneity, dynamic evolution, and complex multimodal data relationships, limiting their predictive accuracy. Our STG framework combines preoperative CT imaging and clinical data into a heterogeneous graph structure, enabling joint modeling of tumor distribution and temporal evolution through spatial topology and cross-modal edges. The framework uses GraphSAGE to aggregate spatiotemporal neighborhood information and leverages supervised and contrastive learning strategies to enhance the model's ability to capture temporal features and improve robustness. A lightweight version of the model reduces parameter count by 78.55%, maintaining near-state-of-the-art performance. The model jointly optimizes recurrence risk regression and survival analysis tasks, with contrastive loss improving feature representational discriminability and cross-modal consistency. Experimental results on the MSKCC CRLM dataset show a time-adjacent accuracy of 85% and a mean absolute error of 1.1005, significantly outperforming existing methods. The innovative heterogeneous graph construction and spatiotemporal decoupling mechanism effectively uncover the associations between dynamic tumor microenvironment changes and prognosis, providing reliable quantitative support for personalized treatment decisions.

V3DQutrit a volumetric medical image segmentation based on 3D qutrit optimized modified tensor ring model.

Verma P, Kumar H, Shukla DK, Satpathy S, Alsekait DM, Khalaf OI, Alzoubi A, Alqadi BS, AbdElminaam DS, Kushwaha A, Singh J

pubmed logopapersMay 6 2025
This paper introduces 3D-QTRNet, a novel quantum-inspired neural network for volumetric medical image segmentation. Unlike conventional CNNs, which suffer from slow convergence and high complexity, and QINNs, which are limited to grayscale segmentation, our approach leverages qutrit encoding and tensor ring decomposition. These techniques improve segmentation accuracy, optimize memory usage, and accelerate model convergence. The proposed model demonstrates superior performance on the BRATS19 and Spleen datasets, outperforming state-of-the-art CNN and quantum models in terms of Dice similarity and segmentation precision. This work bridges the gap between quantum computing and medical imaging, offering a scalable solution for real-world applications.

Real-time brain tumour diagnoses using a novel lightweight deep learning model.

Alnageeb MHO, M H S

pubmed logopapersMay 6 2025
Brain tumours continue to be a primary cause of worldwide death, highlighting the critical need for effective and accurate diagnostic tools. This article presents MK-YOLOv8, an innovative lightweight deep learning framework developed for the real-time detection and categorization of brain tumours from MRI images. Based on the YOLOv8 architecture, the proposed model incorporates Ghost Convolution, the C3Ghost module, and the SPPELAN module to improve feature extraction and substantially decrease computational complexity. An x-small object detection layer has been added, supporting precise detection of small and x-small tumours, which is crucial for early diagnosis. Trained on the Figshare Brain Tumour (FBT) dataset comprising (3,064) MRI images, MK-YOLOv8 achieved a mean Average Precision (mAP) of 99.1% at IoU (0.50) and 88.4% at IoU (0.50-0.95), outperforming YOLOv8 (98% and 78.8%, respectively). Glioma recall improved by 26%, underscoring the enhanced sensitivity to challenging tumour types. With a computational footprint of only 96.9 GFLOPs (representing 37.5% of YOYOLOv8x'sFLOPs) and utilizing 12.6 million parameters, a mere 18.5% of YOYOLOv8's parameters, MK-YOLOv8 delivers high efficiency with reduced resource demands. Also, it trained on the Br35H dataset (801 images) to guarantee the model's robustness and generalization; it achieved a mAP of 98.6% at IoU (0.50). The suggested model operates at 62 frames per second (FPS) and is suited for real-time clinical processes. These developments establish MK-YOLOv8 as an innovative framework, overcoming challenges in tiny tumour identification and providing a generalizable, adaptable, and precise detection approach for brain tumour diagnostics in clinical settings.

Rethinking Boundary Detection in Deep Learning-Based Medical Image Segmentation

Yi Lin, Dong Zhang, Xiao Fang, Yufan Chen, Kwang-Ting Cheng, Hao Chen

arxiv logopreprintMay 6 2025
Medical image segmentation is a pivotal task within the realms of medical image analysis and computer vision. While current methods have shown promise in accurately segmenting major regions of interest, the precise segmentation of boundary areas remains challenging. In this study, we propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators to tackle this challenge. CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency, without the need for additional data inputs or label injections. Specifically, CTO adheres to the canonical encoder-decoder network paradigm, with a dual-stream encoder network comprising a mainstream CNN stream for capturing local features and an auxiliary StitchViT stream for integrating long-range dependencies. Furthermore, to enhance the model's ability to learn boundary areas, we introduce a boundary-guided decoder network that employs binary boundary masks generated by dedicated edge detection operators to provide explicit guidance during the decoding process. We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets, namely ISIC 2016, PH2, ISIC 2018, CoNIC, LiTS17, and BTCV. Our experimental results unequivocally demonstrate that CTO achieves state-of-the-art accuracy on these datasets while maintaining competitive model complexity. The codes have been released at: https://github.com/xiaofang007/CTO.

Path and Bone-Contour Regularized Unpaired MRI-to-CT Translation

Teng Zhou, Jax Luo, Yuping Sun, Yiheng Tan, Shun Yao, Nazim Haouchine, Scott Raymond

arxiv logopreprintMay 6 2025
Accurate MRI-to-CT translation promises the integration of complementary imaging information without the need for additional imaging sessions. Given the practical challenges associated with acquiring paired MRI and CT scans, the development of robust methods capable of leveraging unpaired datasets is essential for advancing the MRI-to-CT translation. Current unpaired MRI-to-CT translation methods, which predominantly rely on cycle consistency and contrastive learning frameworks, frequently encounter challenges in accurately translating anatomical features that are highly discernible on CT but less distinguishable on MRI, such as bone structures. This limitation renders these approaches less suitable for applications in radiation therapy, where precise bone representation is essential for accurate treatment planning. To address this challenge, we propose a path- and bone-contour regularized approach for unpaired MRI-to-CT translation. In our method, MRI and CT images are projected to a shared latent space, where the MRI-to-CT mapping is modeled as a continuous flow governed by neural ordinary differential equations. The optimal mapping is obtained by minimizing the transition path length of the flow. To enhance the accuracy of translated bone structures, we introduce a trainable neural network to generate bone contours from MRI and implement mechanisms to directly and indirectly encourage the model to focus on bone contours and their adjacent regions. Evaluations conducted on three datasets demonstrate that our method outperforms existing unpaired MRI-to-CT translation approaches, achieving lower overall error rates. Moreover, in a downstream bone segmentation task, our approach exhibits superior performance in preserving the fidelity of bone structures. Our code is available at: https://github.com/kennysyp/PaBoT.

Artificial intelligence in bronchoscopy: a systematic review.

Cold KM, Vamadevan A, Laursen CB, Bjerrum F, Singh S, Konge L

pubmed logopapersApr 1 2025
Artificial intelligence (AI) systems have been implemented to improve the diagnostic yield and operators' skills within endoscopy. Similar AI systems are now emerging in bronchoscopy. Our objective was to identify and describe AI systems in bronchoscopy. A systematic review was performed using MEDLINE, Embase and Scopus databases, focusing on two terms: bronchoscopy and AI. All studies had to evaluate their AI against human ratings. The methodological quality of each study was assessed using the Medical Education Research Study Quality Instrument (MERSQI). 1196 studies were identified, with 20 passing the eligibility criteria. The studies could be divided into three categories: nine studies in airway anatomy and navigation, seven studies in computer-aided detection and classification of nodules in endobronchial ultrasound, and four studies in rapid on-site evaluation. 16 were assessment studies, with 12 showing equal performance and four showing superior performance of AI compared with human ratings. Four studies within airway anatomy implemented their AI, all favouring AI guidance to no AI guidance. The methodological quality of the studies was moderate (mean MERSQI 12.9 points, out of a maximum 18 points). 20 studies developed AI systems, with only four examining the implementation of their AI. The four studies were all within airway navigation and favoured AI to no AI in a simulated setting. Future implementation studies are warranted to test for the clinical effect of AI systems within bronchoscopy.

Radiomics and Deep Learning as Important Techniques of Artificial Intelligence - Diagnosing Perspectives in Cytokeratin 19 Positive Hepatocellular Carcinoma.

Wang F, Yan C, Huang X, He J, Yang M, Xian D

pubmed logopapersJan 1 2025
Currently, there are inconsistencies among different studies on preoperative prediction of Cytokeratin 19 (CK19) expression in HCC using traditional imaging, radiomics, and deep learning. We aimed to systematically analyze and compare the performance of non-invasive methods for predicting CK19-positive HCC, thereby providing insights for the stratified management of HCC patients. A comprehensive literature search was conducted in PubMed, EMBASE, Web of Science, and the Cochrane Library from inception to February 2025. Two investigators independently screened and extracted data based on inclusion and exclusion criteria. Eligible studies were included, and key findings were summarized in tables to provide a clear overview. Ultimately, 22 studies involving 3395 HCC patients were included. 72.7% (16/22) focused on traditional imaging, 36.4% (8/22) on radiomics, 9.1% (2/22) on deep learning, and 54.5% (12/22) on combined models. The magnetic resonance imaging was the most commonly used imaging modality (19/22), and over half of the studies (12/22) were published between 2022 and 2025. Moreover, 27.3% (6/22) were multicenter studies, 36.4% (8/22) included a validation set, and only 13.6% (3/22) were prospective. The area under the curve (AUC) range of using clinical and traditional imaging was 0.560 to 0.917. The AUC ranges of radiomics were 0.648 to 0.951, and the AUC ranges of deep learning were 0.718 to 0.820. Notably, the AUC ranges of combined models of clinical, imaging, radiomics and deep learning were 0.614 to 0.995. Nevertheless, the multicenter external data were limited, with only 13.6% (3/22) incorporating validation. The combined model integrating traditional imaging, radiomics and deep learning achieves excellent potential and performance for predicting CK19 in HCC. Based on current limitations, future research should focus on building an easy-to-use dynamic online tool, combining multicenter-multimodal imaging and advanced deep learning approaches to enhance the accuracy and robustness of model predictions.

Metal artifact reduction combined with deep learning image reconstruction algorithm for CT image quality optimization: a phantom study.

Zou H, Wang Z, Guo M, Peng K, Zhou J, Zhou L, Fan B

pubmed logopapersJan 1 2025
Aiming to evaluate the effects of the smart metal artifact reduction (MAR) algorithm and combinations of various scanning parameters, including radiation dose levels, tube voltage, and reconstruction algorithms, on metal artifact reduction and overall image quality, to identify the optimal protocol for clinical application. A phantom with a pacemaker was examined using standard dose (effective dose (ED): 3 mSv) and low dose (ED: 0.5 mSv), with three scan voltages (70, 100, and 120 kVp) selected for each dose. Raw data were reconstructed using 50% adaptive statistical iterative reconstruction-V (ASIR-V), ASIR-V with MAR, high-strength deep learning image reconstruction (DLIR-H), and DLIR-H with MAR. Quantitative analyses (artifact index (AI), noise, signal-to-noise ratio (SNR) of artifact-impaired pulmonary nodules (PNs), and noise power spectrum (NPS) of artifact-free regions) and qualitative evaluation were performed. Quantitatively, the deep learning image recognition (DLIR) algorithm or high tube voltages exhibited lower noise compared to the ASIR-V or low tube voltages (<i>p</i> < 0.001). AI of images with MAR or high tube voltages was significantly lower than that of images without MAR or low tube voltages (<i>p</i> < 0.001). No significant difference was observed in AI between low-dose images with 120 kVp DLIR-H MAR and standard-dose images with 70 kVp ASIR-V MAR (<i>p</i> = 0.143). Only the 70 kVp 3 mSv protocol demonstrated statistically significant differences in SNR for artifact-impaired PNs (<i>p</i> = 0.041). The f<sub>peak</sub> and f<sub>avg</sub> values were similar across various scenarios, indicating that the MAR algorithm did not alter the image texture in artifact-free regions. The qualitative results of the extent of metal artifacts, the confidence in diagnosing artifact-impaired PNs, and the overall image quality were generally consistent with the quantitative results. The MAR algorithm combined with DLIR-H can reduce metal artifacts and enhance the overall image quality, particularly at high kVp tube voltages.
Page 139 of 1401393 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.