Sort by:
Page 136 of 1521519 results

Two birds with one stone: pre-TAVI coronary CT angiography combined with FFR helps screen for coronary stenosis.

Wang R, Pan D, Sun X, Yang G, Yao J, Shen X, Xiao W

pubmed logopapersMay 26 2025
Since coronary artery disease (CAD) is a common comorbidity in patients with aortic valve stenosis, invasive coronary angiography (ICA) can be avoided if significant CAD can be screened with the non-invasive coronary CT angiography (cCTA). This study aims to evaluate the ability of machine learning-based CT coronary fractional flow reserve (CT-FFR) derived from cCTA to aid in the diagnosis of comorbid CAD in patients undergoing transcatheter aortic valve implantation (TAVI). A total of 100 patients who underwent both cCTA and ICA assessments prior to TAVI procedure between January 2021 and July 2023 were included. Coronary stenosis was assessed using both cCTA data and machine learning-generated CT-FFR image information for patients/major coronary vessels. Coronary lesions with CT-FFR ≤ 0.80 were defined as hemodynamically significant, with ICA serving as the diagnostic gold standard. A total of 400 major coronary vessels were identified in 100 eligible patients who underwent TAVI. CT-FFR was 86.4% sensitive and 66.1% specific to diagnose CAD, with a positive predictive value (PPV) of 66.7% and a negative predictive value (NPV) of 86.0%. The diagnostic accuracy (Acc) was 75.0%, with a false positive rate (FPR) of 33.9%. At the vessel level, CT-FFR showed a sensitivity of 77.6% and a specificity of 76.9%. The PPV was 44.0% and the NPV was 93.6%. The Acc was 77.0% and the FPR was 23.1%. For all patient/vessel units, CT-FFR outperformed cCTA. Machine learning-based CT-FFR can effectively detect coronary hemodynamic abnormalities. Combined with preoperative cCTA in TAVI patients, it is an effective tool to rule out significant CAD, reducing unnecessary coronary angiography in this high-risk population. Not applicable.

A novel MRI-based deep learning imaging biomarker for comprehensive assessment of the lenticulostriate artery-neural complex.

Song Y, Jin Y, Wei J, Wang J, Zheng Z, Wang Y, Zeng R, Lu W, Huang B

pubmed logopapersMay 26 2025
To develop a deep learning network for extracting features from the blood-supplying regions of the lenticulostriate artery (LSA) and to establish these features as an imaging biomarker for the comprehensive assessment of the lenticulostriate artery-neural complex (LNC). Automatic segmentation of brain regions on T1-weighted images was performed, followed by the development of the ResNet18 framework to extract and visualize deep learning features from three regions of interest (ROIs). The root mean squared error (RMSE) was then used to assess the correlation between these features and fractional anisotropy (FA) values from diffusion tensor imaging (DTI) and cerebral blood flow (CBF) values from arterial spin labeling (ASL). The correlation of these features with LSA root numbers and three disease categories was further validated using fine-tuning classification (Task1 and Task2). Seventy-nine patients were enrolled and classified into three groups. No significant differences were found in the number of LSA roots between the right and left hemispheres, nor in the FA and CBF values of the ROIs. The RMSE loss, relative to the mean FA and CBF values across different ROI inputs, ranged from 0.154 to 0.213%. The model's accuracy in Task1 and Task2 fine-tuning classification reached 100%. Deep learning features extracted from the basal ganglia nuclei effectively reflect cerebrovascular and neurological functions and reveal the damage status of the LSA. This approach holds promise as a novel imaging biomarker for the comprehensive assessment of the LNC.

Predicting treatment response in individuals with major depressive disorder using structural MRI-based similarity features.

Song S, Wang S, Gao J, Zhu L, Zhang W, Wang Y, Wang D, Zhang D, Wang K

pubmed logopapersMay 26 2025
Major Depressive Disorder (MDD) is a prevalent mental health condition with significant societal impact. Structural magnetic resonance imaging (sMRI) and machine learning have shown promise in psychiatry, offering insights into brain abnormalities in MDD. However, predicting treatment response remains challenging. This study leverages inter-brain similarity from sMRI as a novel feature to enhance prediction accuracy and explore disease mechanisms. The method's generalizability across adult and adolescent cohorts is also evaluated. The study included 172 participants. Based on remission status, 39 participants from the Hangzhou Dataset and 34 from the Jinan Dataset were selected for further analysis. Three methods were used to extract brain similarity features, followed by a statistical test for feature selection. Six machine learning classifiers were employed to predict treatment response, and their generalizability was tested using the Jinan Dataset. Group analyses between remission and non-remission groups were conducted to identify brain regions associated with treatment response. Brain similarity features outperformed traditional metrics in predicting treatment outcomes, with the highest accuracy achieved by the model using these features. Between-group analyses revealed that the remission group had lower gray matter volume and density in the right precentral gyrus, but higher white matter volume (WMV). In the Jinan Dataset, significant differences were observed in the right cerebellum and fusiform gyrus, with higher WMV and density in the remission group. This study demonstrates that brain similarity features combined with machine learning can predict treatment response in MDD with moderate success across age groups. These findings emphasize the importance of considering age-related differences in treatment planning to personalize care. Clinical trial number: not applicable.

Auto-segmentation of cerebral cavernous malformations using a convolutional neural network.

Chou CJ, Yang HC, Lee CC, Jiang ZH, Chen CJ, Wu HM, Lin CF, Lai IC, Peng SJ

pubmed logopapersMay 26 2025
This paper presents a deep learning model for the automated segmentation of cerebral cavernous malformations (CCMs). The model was trained using treatment planning data from 199 Gamma Knife (GK) exams, comprising 171 cases with a single CCM and 28 cases with multiple CCMs. The training data included initial MRI images with target CCM regions manually annotated by neurosurgeons. For the extraction of data related to the brain parenchyma, we employed a mask region-based convolutional neural network (Mask R-CNN). Subsequently, this data was processed using a 3D convolutional neural network known as DeepMedic. The efficacy of the brain parenchyma extraction model was demonstrated via five-fold cross-validation, resulting in an average Dice similarity coefficient of 0.956 ± 0.002. The segmentation models used for CCMs achieved average Dice similarity coefficients of 0.741 ± 0.028 based solely on T2W images. The Dice similarity coefficients for the segmentation of CCMs types were as follows: Zabramski Classification type I (0.743), type II (0.742), and type III (0.740). We also developed a user-friendly graphical user interface to facilitate the use of these models in clinical analysis. This paper presents a deep learning model for the automated segmentation of CCMs, demonstrating sufficient performance across various Zabramski classifications. not applicable.

Detecting microcephaly and macrocephaly from ultrasound images using artificial intelligence.

Mengistu AK, Assaye BT, Flatie AB, Mossie Z

pubmed logopapersMay 26 2025
Microcephaly and macrocephaly, which are abnormal congenital markers, are associated with developmental and neurologic deficits. Hence, there is a medically imperative need to conduct ultrasound imaging early on. However, resource-limited countries such as Ethiopia are confronted with inadequacies such that access to trained personnel and diagnostic machines inhibits the exact and continuous diagnosis from being met. This study aims to develop a fetal head abnormality detection model from ultrasound images via deep learning. Data were collected from three Ethiopian healthcare facilities to increase model generalizability. The recruitment period for this study started on November 9, 2024, and ended on November 30, 2024. Several preprocessing techniques have been performed, such as augmentation, noise reduction, and normalization. SegNet, UNet, FCN, MobileNetV2, and EfficientNet-B0 were applied to segment and measure fetal head structures using ultrasound images. The measurements were classified as microcephaly, macrocephaly, or normal using WHO guidelines for gestational age, and then the model performance was compared with that of existing industry experts. The metrics used for evaluation included accuracy, precision, recall, the F1 score, and the Dice coefficient. This study was able to demonstrate the feasibility of using SegNet for automatic segmentation, measurement of abnormalities of the fetal head, and classification of macrocephaly and microcephaly, with an accuracy of 98% and a Dice coefficient of 0.97. Compared with industry experts, the model achieved accuracies of 92.5% and 91.2% for the BPD and HC measurements, respectively. Deep learning models can enhance prenatal diagnosis workflows, especially in resource-constrained settings. Future work needs to be done on optimizing model performance, trying complex models, and expanding datasets to improve generalizability. If these technologies are adopted, they can be used in prenatal care delivery. Not applicable.

The extent of Skeletal muscle wasting in prolonged critical illness and its association with survival: insights from a retrospective single-center study.

Kolck J, Hosse C, Fehrenbach U, Beetz NL, Auer TA, Pille C, Geisel D

pubmed logopapersMay 26 2025
Muscle wasting in critically ill patients, particularly those with prolonged hospitalization, poses a significant challenge to recovery and long-term outcomes. The aim of this study was to characterize long-term muscle wasting trajectories in ICU patients with acute respiratory distress syndrome (ARDS) due to COVID-19 and acute pancreatitis (AP), to evaluate correlations between muscle wasting and patient outcomes, and to identify clinically feasible thresholds that have the potential to enhance patient care strategies. A collective of 154 ICU patients (100 AP and 54 COVID-19 ARDS) with a minimum ICU stay of 10 days and at least three abdominal CT scans were retrospectively analyzed. AI-driven segmentation of CT scans quantified changes in psoas muscle area (PMA). A mixed model analysis was used to assess the correlation between mortality and muscle wasting, Cox regression was applied to identify potential predictors of survival. Muscle loss rates, survival thresholds and outcome correlations were assessed using Kaplan-Meier and receiver operating characteristic (ROC) analyses. Muscle loss in ICU patients was most pronounced in the first two weeks, peaking at -2.42% and - 2.39% psoas muscle area (PMA) loss per day in weeks 1 and 2, respectively, followed by a progressive decline. The median total PMA loss was 48.3%, with significantly greater losses in non-survivors. Mixed model analysis confirmed correlation of muscle wasting with mortality. Cox regression identified visceral adipose tissue (VAT), sequential organ failure assessment (SOFA) score and muscle wasting as significant risk factors, while increased skeletal muscle area (SMA) was protective. ROC and Kaplan-Meier analyses showed strong correlations between PMA loss thresholds and survival, with daily loss > 4% predicting the worst survival (39.7%). To our knowledge, This is the first study to highlight the substantial progression of muscle wasting in prolonged hospitalized ICU patients. The mortality-related thresholds for muscle wasting rates identified in this study may provide a basis for clinical risk stratification. Future research should validate these findings in larger cohorts and explore strategies to mitigate muscle loss. Not applicable.

Deep learning radiomics of left atrial appendage features for predicting atrial fibrillation recurrence.

Yin Y, Jia S, Zheng J, Wang W, Wang Z, Lin J, Lin W, Feng C, Xia S, Ge W

pubmed logopapersMay 26 2025
Structural remodeling of the left atrial appendage (LAA) is characteristic of atrial fibrillation (AF), and LAA morphology impacts radiofrequency catheter ablation (RFCA) outcomes. In this study, we aimed to develop and validate a predictive model for AF ablation outcomes using LAA morphological features, deep learning (DL) radiomics, and clinical variables. In this multicenter retrospective study, 480 consecutive patients who underwent RFCA for AF at three tertiary hospitals between January 2016 and December 2022 were analyzed, with follow-up through December 2023. Preprocedural CT angiography (CTA) images and laboratory data were systematically collected. LAA segmentation was performed using an nnUNet-based model, followed by radiomic feature extraction. Cox proportional hazard regression analysis assessed the relationship between AF recurrence and LAA volume. The dataset was randomly split into training (70%) and validation (30%) cohorts using stratified sampling. An AF recurrence prediction model integrating LAA DL radiomics with clinical variables was developed. The cohort had a median follow-up of 22 months (IQR 15-32), with 103 patients (21.5%) experiencing AF recurrence. The nnUNet segmentation model achieved a Dice coefficient of 0.89. Multivariate analysis showed that LAA volume was associated with a 5.8% increase in hazard risk per unit increase (aHR 1.058, 95% CI 1.021-1.095; p = 0.002). The model combining LAA DL radiomics with clinical variables demonstrated an AUC of 0.92 (95% CI 0.87-0.96) in the test set, maintaining robust predictive performance across subgroups. LAA morphology and volume are strongly linked to AF RFCA outcomes. We developed an LAA segmentation network and a predictive model that combines DL radiomics and clinical variables to estimate the probability of AF recurrence.

A dataset for quality evaluation of pelvic X-ray and diagnosis of developmental dysplasia of the hip.

Qi G, Jiao X, Li J, Qin C, Li X, Sun Z, Zhao Y, Jiang R, Zhu Z, Zhao G, Yu G

pubmed logopapersMay 26 2025
Developmental Dysplasia of the Hip (DDH) stands as one of the preeminent hip disorders prevalent in pediatric orthopedics. Automated diagnostic instruments, driven by artificial intelligence methodologies, are capable of providing substantial assistance to clinicians in the diagnosis of DDH. We have developed a dataset designated as Multitasking DDH (MTDDH), which is composed of two sub-datasets. Dataset 1 encompasses 1,250 pelvic X-ray images, with annotations demarcating four discrete regions for the evaluation of pelvic X-ray quality, in tandem with eight pivotal points serving as support for DDH diagnosis. Dataset 2 contains 906 pelvic X-ray images, and each image has been annotated with eight key points for assisting in the diagnosis of DDH. Notably, MTDDH represents the pioneering dataset engineered for the comprehensive evaluation of pelvic X-ray quality while concurrently offering the most exhaustive set of eight key points to bolster DDH diagnosis, thus fulfilling the exigency for enhanced diagnostic precision. Ultimately, we presented the elaborate process of constructing the MTDDH and furnished a concise introduction regarding its application.

Differentiating Benign and Hepatocellular Carcinoma Cirrhotic Nodules: Radiomics Analysis of Water Restriction Patterns with Diffusion MRI.

Arian A, Fotouhi M, Samadi Khoshe Mehr F, Setayeshpour B, Delazar S, Nahvijou A, Nasiri-Toosi M

pubmed logopapersMay 26 2025
Current study aimed to investigate radiomics features derived from two-center diffusion-MRI to differentiate benign and hepatocellular carcinoma (HCC) liver nodules. A total of 328 patients with 517 LI-RADS 2-5 nodules were included. MR images were retrospectively collected from 3 T and 1.5 T MRI vendors. Lesions were categorized into 242 benign and 275 HCC based on follow-up imaging for LR-2,3 and pathology results for LR4,5 nodules, and randomly divided into training (80%) and test (20%) sets. Preprocessing included resampling and normalization. Radiomics features were extracted from lesion volume-of-interest (VOI) on diffusion Images. Scanner variability was corrected using ComBat harmonization method followed by High-correlation filter, PCA filter, and LASSO to select important features. Best classifier model was selected by 10-fold cross-validation, and accuracy was assessed on the test dataset. 1,434 features were extracted, and subsequent classifiers were constructed based on the 16 most important selected features. Notably, support-vector machine (SVM) demonstrated better performance in the test dataset in distinguishing between benign and HCC nodules, achieving an accuracy of 0.92, sensitivity of 0.94, and specificity of 0.86. Utilizing diffusion-MRI radiomics, our study highlights the performance of SVM, trained on lesions' diffusivity characteristics, in distinguishing benign and HCC nodules, ensuring clinical potential. It is suggested that further evaluations be conducted on multi-center datasets to address harmonization challenges. Integration of diffusion radiomics, for monitoring water restriction patterns as tumor histopathological index, with machine learning models demonstrates potential for achieving a reliable noninvasive method to improve the current diagnosis criteria.

Impact of contrast-enhanced agent on segmentation using a deep learning-based software "Ai-Seg" for head and neck cancer.

Kihara S, Ueda Y, Harada S, Masaoka A, Kanayama N, Ikawa T, Inui S, Akagi T, Nishio T, Konishi K

pubmed logopapersMay 26 2025
In radiotherapy, auto-segmentation tools using deep learning assist in contouring organs-at-risk (OARs). We developed a segmentation model for head and neck (HN) OARs dedicated to contrast-enhanced (CE) computed tomography (CT) using the segmentation software, Ai-Seg, and compared the performance between CE and non-CE (nCE) CT. The retrospective study recruited 321 patients with HN cancers and trained a segmentation model using CE CT (CE model). The CE model was installed in Ai-Seg and applied to additional 25 patients with CE and nCE CT. The Dice similarity coefficient (DSC) and average Hausdorff distance (AHD) were calculated between the ground truth and Ai-Seg contours for brain, brainstem, chiasm, optic nerves, cochleae, oral cavity, parotid glands, pharyngeal constrictor muscle, and submandibular glands (SMGs). We compared the CE model and the existing model trained with nCE CT available in Ai-Seg for 6 OARs. The CE model obtained significantly higher DSCs on CE CT for parotid and SMGs compared to the existing model. The CE model provided significantly lower DSC values and higher AHD values on nCE CT for SMGs than on CE CT, but comparable values for other OARs. The CE model achieved significantly better performance than the existing model and can be used on nCE CT images without significant performance difference, except SMGs. Our results may facilitate the adoption of segmentation tools in clinical practice. We developed a segmentation model for HN OARs dedicated to CE CT using Ai-Seg and evaluated its usability on nCE CT.
Page 136 of 1521519 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.