Sort by:
Page 135 of 1621612 results

Brain Age Gap Associations with Body Composition and Metabolic Indices in an Asian Cohort: An MRI-Based Study.

Lee HJ, Kuo CY, Tsao YC, Lee PL, Chou KH, Lin CJ, Lin CP

pubmed logopapersJun 1 2025
Global aging raises concerns about cognitive health, metabolic disorders, and sarcopenia. Prevention of reversible decline and diseases in middle-aged individuals is essential for promoting healthy aging. We hypothesize that changes in body composition, specifically muscle mass and visceral fat, and metabolic indices are associated with accelerated brain aging. To explore these relationships, we employed a brain age model to investigate the links between the brain age gap (BAG), body composition, and metabolic markers. Using T1-weighted anatomical brain MRIs, we developed a machine learning model to predict brain age from gray matter features, trained on 2,675 healthy individuals aged 18-92 years. This model was then applied to a separate cohort of 458 Taiwanese adults (57.8 years ± 11.6; 280 men) to assess associations between BAG, body composition quantified by MRI, and metabolic markers. Our model demonstrated reliable generalizability for predicting individual age in the clinical dataset (MAE = 6.11 years, r = 0.900). Key findings included significant correlations between larger BAG and reduced total abdominal muscle area (r = -0.146, p = 0.018), lower BMI-adjusted skeletal muscle indices, (r = -0.134, p = 0.030), increased systemic inflammation, as indicated by high-sensitivity C-reactive protein levels (r = 0.121, p = 0.048), and elevated fasting glucose levels (r = 0.149, p = 0.020). Our findings confirm that muscle mass and metabolic health decline are associated with accelerated brain aging. Interventions to improve muscle health and metabolic control may mitigate adverse effects of brain aging, supporting healthier aging trajectories.

Focal cortical dysplasia detection by artificial intelligence using MRI: A systematic review and meta-analysis.

Dashtkoohi M, Ghadimi DJ, Moodi F, Behrang N, Khormali E, Salari HM, Cohen NT, Gholipour T, Saligheh Rad H

pubmed logopapersJun 1 2025
Focal cortical dysplasia (FCD) is a common cause of pharmacoresistant epilepsy. However, it can be challenging to detect FCD using MRI alone. This study aimed to review and analyze studies that used machine learning and artificial neural networks (ANN) methods as an additional tool to enhance MRI findings in FCD patients. A systematic search was conducted in four databases (Embase, PubMed, Scopus, and Web of Science). The quality of the studies was assessed using QUADAS-AI, and a bivariate random-effects model was used for analysis. The main outcome analyzed was the sensitivity and specificity of patient-wise outcomes. Heterogeneity among studies was assessed using I<sup>2</sup>. A total of 41 studies met the inclusion criteria, including 24 ANN-based studies and 17 machine learning studies. Meta-analysis of internal validation datasets showed a pooled sensitivity of 0.81 and specificity of 0.92 for AI-based models in detecting FCD lesions. Meta-analysis of external validation datasets yielded a pooled sensitivity of 0.73 and specificity of 0.66. There was moderate heterogeneity among studies in the external validation dataset, but no significant publication bias was found. Although there is an increasing number of machine learning and ANN-based models for FCD detection, their clinical applicability remains limited. Further refinement and optimization, along with longitudinal studies, are needed to ensure their integration into clinical practice. Addressing the identified limitations and intensifying research efforts will improve their relevance and reliability in real medical scenarios.

Multi-class brain malignant tumor diagnosis in magnetic resonance imaging using convolutional neural networks.

Lv J, Wu L, Hong C, Wang H, Wu Z, Chen H, Liu Z

pubmed logopapersJun 1 2025
Glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and brain metastases (BM) are common malignant brain tumors with similar radiological features, while the accurate and non-invasive dialgnosis is essential for selecting appropriate treatment plans. This study develops a deep learning model, FoTNet, to improve the automatic diagnosis accuracy of these tumors, particularly for the relatively rare PCNSL tumor. The model integrates a frequency-based channel attention layer and the focal loss to address the class imbalance issue caused by the limited samples of PCNSL. A multi-center MRI dataset was constructed by collecting and integrating data from Sir Run Run Shaw Hospital, along with public datasets from UPENN and TCGA. The dataset includes T1-weighted contrast-enhanced (T1-CE) MRI images from 58 GBM, 82 PCNSL, and 269 BM cases, which were divided into training and testing sets with a 5:2 ratio. FoTNet achieved a classification accuracy of 92.5 % and an average AUC of 0.9754 on the test set, significantly outperforming existing machine learning and deep learning methods in distinguishing among GBM, PCNSL, and BM. Through multiple validations, FoTNet has proven to be an effective and robust tool for accurately classifying these brain tumors, providing strong support for preoperative diagnosis and assisting clinicians in making more informed treatment decisions.

Image normalization techniques and their effect on the robustness and predictive power of breast MRI radiomics.

Schwarzhans F, George G, Escudero Sanchez L, Zaric O, Abraham JE, Woitek R, Hatamikia S

pubmed logopapersJun 1 2025
Radiomics analysis has emerged as a promising approach to aid in cancer diagnosis and treatment. However, radiomics research currently lacks standardization, and radiomics features can be highly dependent on acquisition and pre-processing techniques used. In this study, we aim to investigate the effect of various image normalization techniques on robustness of radiomics features extracted from breast cancer patient MRI scans. MRI scans from the publicly available MAMA-MIA dataset and an internal breast MRI test set depicting triple negative breast cancer (TNBC) were used. We compared the effect of commonly used image normalization techniques on radiomics feature robustnessusing Concordance-Correlation-Coefficient (CCC) between multiple combinations of normalization approaches. We also trained machine learning-based prediction models of pathologic complete response (pCR) on radiomics after different normalization techniques were used and compared their areas under the receiver operating characteristic curve (ROC-AUC). For predicting complete pathological response from pre-treatment breast cancer MRI radiomics, the highest overall ROC-AUC was achieved by using a combination of three different normalization techniques indicating their potentially powerful role when working with heterogeneous imaging data. The effect of normalization was more pronounced with smaller training data and normalization may be less important with increasing abundance of training data. Additionally, we observed considerable differences between MRI data sets and their feature robustness towards normalization. Overall, we were able to demonstrate the importance of selecting and standardizing normalization methods for accurate and reliable radiomics analysis in breast MRI scans especially with small training data sets.

The impact of Alzheimer's disease on cortical complexity and its underlying biological mechanisms.

Chen L, Zhou X, Qiao Y, Wang Y, Zhou Z, Jia S, Sun Y, Peng D

pubmed logopapersJun 1 2025
Alzheimer's disease (AD) might impact the complexity of cerebral cortex, and the underlying biological mechanisms responsible for cortical changes in the AD cortex remain unclear. Fifty-eight participants with AD and 67 normal controls underwent high-resolution 3 T structural brain MRI. Using surface-based morphometry (SBM), we created vertex-wise maps for group comparisons in terms of five measures: cortical thickness, fractal dimension, gyrification index, Toro's gyrification index and sulcal depth respectively. Five machine learning (ML) models combining SBM parameters were established to predict AD. In addition, transcription-neuroimaging association analyses, as well as Mendelian randomization of AD and cortical thickness data, were conducted to investigate the genetic mechanisms and biological functions of AD. AD patients exhibited topological changes in cortical complexity, with increased complexity in the frontal and temporal cortex and decreased complexity in the insula cortex, alongside extensive cortical atrophy. Combining different SBM measures could aid disease diagnosis. The genes involved in cell structure support and the immune response were the strongest contributors to cortical anatomical features in AD patients. The identified genes associated with AD cortical morphology were overexpressed or underexpressed in excitatory neurons, oligodendrocytes, and astrocytes. Complexity alterations of the cerebral surface may be associated with a range of biological processes and molecular mechanisms, including immune responses. The present findings may contribute to a more comprehensive understanding of brain morphological patterns in AD patients.

multiPI-TransBTS: A multi-path learning framework for brain tumor image segmentation based on multi-physical information.

Zhu H, Huang J, Chen K, Ying X, Qian Y

pubmed logopapersJun 1 2025
Brain Tumor Segmentation (BraTS) plays a critical role in clinical diagnosis, treatment planning, and monitoring the progression of brain tumors. However, due to the variability in tumor appearance, size, and intensity across different MRI modalities, automated segmentation remains a challenging task. In this study, we propose a novel Transformer-based framework, multiPI-TransBTS, which integrates multi-physical information to enhance segmentation accuracy. The model leverages spatial information, semantic information, and multi-modal imaging data, addressing the inherent heterogeneity in brain tumor characteristics. The multiPI-TransBTS framework consists of an encoder, an Adaptive Feature Fusion (AFF) module, and a multi-source, multi-scale feature decoder. The encoder incorporates a multi-branch architecture to separately extract modality-specific features from different MRI sequences. The AFF module fuses information from multiple sources using channel-wise and element-wise attention, ensuring effective feature recalibration. The decoder combines both common and task-specific features through a Task-Specific Feature Introduction (TSFI) strategy, producing accurate segmentation outputs for Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET) regions. Comprehensive evaluations on the BraTS2019 and BraTS2020 datasets demonstrate the superiority of multiPI-TransBTS over the state-of-the-art methods. The model consistently achieves better Dice coefficients, Hausdorff distances, and Sensitivity scores, highlighting its effectiveness in addressing the BraTS challenges. Our results also indicate the need for further exploration of the balance between precision and recall in the ET segmentation task. The proposed framework represents a significant advancement in BraTS, with potential implications for improving clinical outcomes for brain tumor patients.

Advances in MRI optic nerve segmentation.

Xena-Bosch C, Kodali S, Sahi N, Chard D, Llufriu S, Toosy AT, Martinez-Heras E, Prados F

pubmed logopapersJun 1 2025
Understanding optic nerve structure and monitoring changes within it can provide insights into neurodegenerative diseases like multiple sclerosis, in which optic nerves are often damaged by inflammatory episodes of optic neuritis. Over the past decades, interest in the optic nerve has increased, particularly with advances in magnetic resonance technology and the advent of deep learning solutions. These advances have significantly improved the visualisation and analysis of optic nerves, making it possible to detect subtle changes that aid the early diagnosis and treatment of optic nerve-related diseases, and for planning radiotherapy interventions. Effective segmentation techniques, therefore, are crucial for enhancing the accuracy of predictive models, planning interventions and treatment strategies. This comprehensive review, which includes 27 peer-reviewed articles published between 2007 and 2024, examines and highlights the evolution of optic nerve magnetic resonance imaging segmentation over the past decade, tracing the development from intensity-based methods to the latest deep learning algorithms, including multi-atlas solutions using single or multiple image modalities.

Artificial intelligence-assisted magnetic resonance lymphography for evaluation of micro- and macro-sentinel lymph node metastasis in breast cancer.

Yang Z, Ling J, Sun W, Pan C, Chen T, Dong C, Zhou X, Zhang J, Zheng J, Ma X

pubmed logopapersJun 1 2025
Contrast-enhanced magnetic resonance lymphography (CE-MRL) plays a crucial role in preoperative diagnostic for evaluating tumor metastatic sentinel lymph node (T-SLN), by integrating detailed lymphatic information about lymphatic anatomy and drainage function from MR images. However, the clinical gadolinium-based contrast agents for identifying T-SLN is seriously limited, owing to their small molecular structure and rapid diffusion into the bloodstream. Herein, we propose a novel albumin-modified manganese-based nanoprobes enhanced MRL method for accurately assessing micro- and macro-T-SLN. Specifically, the inherent concentration gradient of albumin between blood and interstitial fluid aids in the movement of nanoprobes into the lymphatic system. The micro-T-SLN exhibits a notably higher MR signal due to the formation of new lymphatic vessels and increased lymphatic flow, allowing for a greater influx of nanoprobes. In contrast, the macro-T-SLN shows a lower MR signal as a result of tumor cell proliferation and damage to the lymphatic vessels. Additionally, a highly accurate and sensitive machine learning model has been developed to guide the identification of micro- and macro-T-SLN by analyzing manganese-enhanced MR images. In conclusion, our research presents a novel comprehensive assessment framework utilizing albumin-modified manganese-based nanoprobes for a highly sensitive evaluation of micro- and macro-T-SLN in breast cancer.

Whole Brain 3D T1 Mapping in Multiple Sclerosis Using Standard Clinical Images Compared to MP2RAGE and MR Fingerprinting.

Snyder J, Blevins G, Smyth P, Wilman AH

pubmed logopapersJun 1 2025
Quantitative T1 and T2 mapping is a useful tool to assess properties of healthy and diseased tissues. However, clinical diagnostic imaging remains dominated by relaxation-weighted imaging without direct collection of relaxation maps. Dedicated research sequences such as MR fingerprinting can save time and improve resolution over classical gold standard quantitative MRI (qMRI) methods, although they are not widely adopted in clinical studies. We investigate the use of clinical sequences in conjunction with prior knowledge provided by machine learning to elucidate T1 maps of brain in routine imaging studies without the need for specialized sequences. A classification learner was trained on T1w (magnetization prepared rapid gradient echo [MPRAGE]) and T2w (fluid-attenuated inversion recovery [FLAIR]) data (2.6 million voxels) from multiple sclerosis (MS) patients at 3T, compared to gold standard inversion recovery fast spin echo T1 maps in five healthy subjects, and tested on eight MS patients. In the MS patient test, the results of the machine learner-produced T1 maps were compared to MP2RAGE and MR fingerprinting T1 maps in seven tissue regions of the brain: cortical grey matter, white matter, cerebrospinal fluid, caudate, putamen and globus pallidus. Additionally, T1s in lesion-segmented tissue was compared using the three different methods. The machine learner (ML) method had excellent agreement with MP2RAGE, with all average tissue deviations less than 3.2%, with T1 lesion variation of 0.1%-5.3% across the eight patients. The machine learning method provides a valuable and accurate estimation of T1 values in the human brain while using data from standard clinical sequences and allowing retrospective reconstruction from past studies without the need for new quantitative techniques.

MRI-based risk factors for intensive care unit admissions in acute neck infections.

Vierula JP, Merisaari H, Heikkinen J, Happonen T, Sirén A, Velhonoja J, Irjala H, Soukka T, Mattila K, Nyman M, Nurminen J, Hirvonen J

pubmed logopapersJun 1 2025
We assessed risk factors and developed a score to predict intensive care unit (ICU) admissions using MRI findings and clinical data in acute neck infections. This retrospective study included patients with MRI-confirmed acute neck infection. Abscess diameters were measured on post-gadolinium T1-weighted Dixon MRI, and specific edema patterns, retropharyngeal (RPE) and mediastinal edema, were assessed on fat-suppressed T2-weighted Dixon MRI. A multivariate logistic regression model identified ICU admission predictors, with risk scores derived from regression coefficients. Model performance was evaluated using the area under the curve (AUC) from receiver operating characteristic analysis. Machine learning models (random forest, XGBoost, support vector machine, neural networks) were tested. The sample included 535 patients, of whom 373 (70 %) had an abscess, and 62 (12 %) required ICU treatment. Significant predictors for ICU admission were RPE, maximal abscess diameter (≥40 mm), and C-reactive protein (CRP) (≥172 mg/L). The risk score (0-7) (AUC=0.82, 95 % confidence interval [CI] 0.77-0.88) outperformed CRP (AUC=0.73, 95 % CI 0.66-0.80, p = 0.001), maximal abscess diameter (AUC=0.72, 95 % CI 0.64-0.80, p < 0.001), and RPE (AUC=0.71, 95 % CI 0.65-0.77, p < 0.001). The risk score at a cut-off > 3 yielded the following metrics: sensitivity 66 %, specificity 82 %, positive predictive value 33 %, negative predictive value 95 %, accuracy 80 %, and odds ratio 9.0. Discriminative performance was robust in internal (AUC=0.83) and hold-out (AUC=0.81) validations. ML models were not better than regression models. A risk model incorporating RPE, abscess size, and CRP showed moderate accuracy and high negative predictive value for ICU admissions, supporting MRI's role in acute neck infections.
Page 135 of 1621612 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.