Sort by:
Page 13 of 42415 results

Developing an innovative lung cancer detection model for accurate diagnosis in AI healthcare systems.

Jian W, Haq AU, Afzal N, Khan S, Alsolai H, Alanazi SM, Zamani AT

pubmed logopapersJul 2 2025
Accurate Lung cancer (LC) identification is a big medical problem in the AI-based healthcare systems. Various deep learning-based methods have been proposed for Lung cancer diagnosis. In this study, we proposed a Deep learning techniques-based integrated model (CNN-GRU) for Lung cancer detection. In the proposed model development Convolutional neural networks (CNNs), and gated recurrent units (GRU) models are integrated to design an intelligent model for lung cancer detection. The CNN model extracts spatial features from lung CT images through convolutional and pooling layers. The extracted features from data are embedded in the GRUs model for the final prediction of LC. The model (CNN-GRU) was validated using LC data using the holdout validation technique. Data augmentation techniques such as rotation, and brightness were used to enlarge the data set size for effective training of the model. The optimization techniques Stochastic Gradient Descent(SGD) and Adaptive Moment Estimation(ADAM) were applied during model training for model training parameters optimization. Additionally, evaluation metrics were used to test the model performance. The experimental results of the model presented that the model achieved 99.77% accuracy as compared to previous models. The (CNN-GRU) model is recommended for accurate LC detection in AI-based healthcare systems due to its improved diagnosis accuracy.

Multi Source COVID-19 Detection via Kernel-Density-based Slice Sampling

Chia-Ming Lee, Bo-Cheng Qiu, Ting-Yao Chen, Ming-Han Sun, Fang-Ying Lin, Jung-Tse Tsai, I-An Tsai, Yu-Fan Lin, Chih-Chung Hsu

arxiv logopreprintJul 2 2025
We present our solution for the Multi-Source COVID-19 Detection Challenge, which classifies chest CT scans from four distinct medical centers. To address multi-source variability, we employ the Spatial-Slice Feature Learning (SSFL) framework with Kernel-Density-based Slice Sampling (KDS). Our preprocessing pipeline combines lung region extraction, quality control, and adaptive slice sampling to select eight representative slices per scan. We compare EfficientNet and Swin Transformer architectures on the validation set. The EfficientNet model achieves an F1-score of 94.68%, compared to the Swin Transformer's 93.34%. The results demonstrate the effectiveness of our KDS-based pipeline on multi-source data and highlight the importance of dataset balance in multi-institutional medical imaging evaluation.

A deep learning-based computed tomography reading system for the diagnosis of lung cancer associated with cystic airspaces.

Hu Z, Zhang X, Yang J, Zhang B, Chen H, Shen W, Li H, Zhou Y, Zhang J, Qiu K, Xie Z, Xu G, Tan J, Pang C

pubmed logopapersJul 2 2025
To propose a deep learning model and explore its performance in the auxiliary diagnosis of lung cancer associated with cystic airspaces (LCCA) in computed tomography (CT) images. This study is a retrospective analysis that incorporated a total of 342 CT series, comprising 272 series from patients diagnosed with LCCA and 70 series from patients with pulmonary bulla. A deep learning model named LungSSFNet, developed based on nnUnet, was utilized for image recognition and segmentation by experienced thoracic surgeons. The dataset was divided into a training set (245 series), a validation set (62 series), and a test set (35 series). The performance of LungSSFNet was compared with other models such as UNet, M2Snet, TANet, MADGNet, and nnUnet to evaluate its effectiveness in recognizing and segmenting LCCA and pulmonary bulla. LungSSFNet achieved an intersection over union of 81.05% and a Dice similarity coefficient of 75.15% for LCCA, and 93.03% and 92.04% for pulmonary bulla, respectively. These outcomes demonstrate that LungSSFNet outperformed many existing models in segmentation tasks. Additionally, it attained an accuracy of 96.77%, a precision of 100%, and a sensitivity of 96.15%. LungSSFNet, a new deep-learning model, substantially improved the diagnosis of early-stage LCCA and is potentially valuable for auxiliary clinical decision-making. Our LungSSFNet code is available at https://github.com/zx0412/LungSSFNet .

BronchoGAN: Anatomically consistent and domain-agnostic image-to-image translation for video bronchoscopy

Ahmad Soliman, Ron Keuth, Marian Himstedt

arxiv logopreprintJul 2 2025
The limited availability of bronchoscopy images makes image synthesis particularly interesting for training deep learning models. Robust image translation across different domains -- virtual bronchoscopy, phantom as well as in-vivo and ex-vivo image data -- is pivotal for clinical applications. This paper proposes BronchoGAN introducing anatomical constraints for image-to-image translation being integrated into a conditional GAN. In particular, we force bronchial orifices to match across input and output images. We further propose to use foundation model-generated depth images as intermediate representation ensuring robustness across a variety of input domains establishing models with substantially less reliance on individual training datasets. Moreover our intermediate depth image representation allows to easily construct paired image data for training. Our experiments showed that input images from different domains (e.g. virtual bronchoscopy, phantoms) can be successfully translated to images mimicking realistic human airway appearance. We demonstrated that anatomical settings (i.e. bronchial orifices) can be robustly preserved with our approach which is shown qualitatively and quantitatively by means of improved FID, SSIM and dice coefficients scores. Our anatomical constraints enabled an improvement in the Dice coefficient of up to 0.43 for synthetic images. Through foundation models for intermediate depth representations, bronchial orifice segmentation integrated as anatomical constraints into conditional GANs we are able to robustly translate images from different bronchoscopy input domains. BronchoGAN allows to incorporate public CT scan data (virtual bronchoscopy) in order to generate large-scale bronchoscopy image datasets with realistic appearance. BronchoGAN enables to bridge the gap of missing public bronchoscopy images.

Deep Learning-enhanced Opportunistic Osteoporosis Screening in Ultralow-Voltage (80 kV) Chest CT: A Preliminary Study.

Li Y, Liu S, Zhang Y, Zhang M, Jiang C, Ni M, Jin D, Qian Z, Wang J, Pan X, Yuan H

pubmed logopapersJul 1 2025
To explore the feasibility of deep learning (DL)-enhanced, fully automated bone mineral density (BMD) measurement using the ultralow-voltage 80 kV chest CT scans performed for lung cancer screening. This study involved 987 patients who underwent 80 kV chest and 120 kV lumbar CT from January to July 2024. Patients were collected from six CT scanners and divided into the training, validation, and test sets 1 and 2 (561: 177: 112: 137). Four convolutional neural networks (CNNs) were employed for automated segmentation (3D VB-Net and SCN), region of interest extraction (3D VB-Net), and BMD calculation (DenseNet and ResNet) of the target vertebrae (T12-L2). The BMD values of T12-L2 were obtained using 80 and 120 kV quantitative CT (QCT), the latter serving as the standard reference. Linear regression and Bland-Altman analyses were used to compare BMD values between 120 kV QCT and 80 kV CNNs, and between 120 kV QCT and 80 kV QCT. Receiver operating characteristic curve analysis was used to assess the diagnostic performance of the 80 kV CNNs and 80 kV QCT for osteoporosis and low BMD from normal BMD. Linear regression and Bland-ltman analyses revealed a stronger correlation (R<sup>2</sup>=0.991-0.998 and 0.990-0.991, P<0.001) and better agreement (mean error, -1.36 to 1.62 and 1.72 to 2.27 mg/cm<sup>3</sup>; 95% limits of agreement, -9.73 to 7.01 and -5.71 to 10.19mg/cm<sup>3</sup>) for BMD between 120 kV QCT and 80 kV CNNs than between 120 kV QCT and 80 kV QCT. The areas under the curve of the 80 kV CNNs and 80 kV QCT in detecting osteoporosis and low BMD were 0.997-1.000 and 0.997-0.998, and 0.998-1.000 and 0.997, respectively. The DL method could achieve fully automated BMD calculation for opportunistic osteoporosis screening with high accuracy using ultralow-voltage 80 kV chest CT performed for lung cancer screening.

Lung cancer screening with low-dose CT: definition of positive, indeterminate, and negative screen results. A nodule management recommendation from the European Society of Thoracic Imaging.

Snoeckx A, Silva M, Prosch H, Biederer J, Frauenfelder T, Gleeson F, Jacobs C, Kauczor HU, Parkar AP, Schaefer-Prokop C, Prokop M, Revel MP

pubmed logopapersJul 1 2025
Early detection of lung cancer through low-dose CT lung cancer screening in a high-risk population has proven to reduce lung cancer-specific mortality. Nodule management plays a pivotal role in early detection and further diagnostic approaches. The European Society of Thoracic Imaging (ESTI) has established a nodule management recommendation to improve the handling of pulmonary nodules detected during screening. For solid nodules, the primary method for assessing the likelihood of malignancy is to monitor nodule growth using volumetry software. For subsolid nodules, the aggressiveness is determined by measuring the solid part. The ESTI-recommendation enhances existing protocols but puts a stronger focus on lesion aggressiveness. The main goals are to minimise the overall number of follow-up examinations while preventing the risk of a major stage shift and reducing the risk of overtreatment. KEY POINTS: Question Assessment of nodule growth and management according to guidelines is essential in lung cancer screening. Findings Assessment of nodule aggressiveness defines follow-up in lung cancer screening. Clinical relevance The ESTI nodule management recommendation aims to reduce follow-up examinations while preventing major stage shift and overtreatment.

Deep Learning Models for CT Segmentation of Invasive Pulmonary Aspergillosis, Mucormycosis, Bacterial Pneumonia and Tuberculosis: A Multicentre Study.

Li Y, Huang F, Chen D, Zhang Y, Zhang X, Liang L, Pan J, Tan L, Liu S, Lin J, Li Z, Hu G, Chen H, Peng C, Ye F, Zheng J

pubmed logopapersJul 1 2025
The differential diagnosis of invasive pulmonary aspergillosis (IPA), pulmonary mucormycosis (PM), bacterial pneumonia (BP) and pulmonary tuberculosis (PTB) are challenging due to overlapping clinical and imaging features. Manual CT lesion segmentation is time-consuming, deep-learning (DL)-based segmentation models offer a promising solution, yet disease-specific models for these infections remain underexplored. We aimed to develop and validate dedicated CT segmentation models for IPA, PM, BP and PTB to enhance diagnostic accuracy. Methods:Retrospective multi-centre data (115 IPA, 53 PM, 130 BP, 125 PTB) were used for training/internal validation, with 21 IPA, 8PM, 30 BP and 31 PTB cases for external validation. Expert-annotated lesions served as ground truth. An improved 3D U-Net architecture was employed for segmentation, with preprocessing steps including normalisations, cropping and data augmentation. Performance was evaluated using Dice coefficients. Results:Internal validation achieved Dice scores of 78.83% (IPA), 93.38% (PM), 80.12% (BP) and 90.47% (PTB). External validation showed slightly reduced but robust performance: 75.09% (IPA), 77.53% (PM), 67.40% (BP) and 80.07% (PTB). The PM model demonstrated exceptional generalisability, scoring 83.41% on IPA data. Cross-validation revealed mutual applicability, with IPA/PTB models achieving > 75% Dice for each other's lesions. BP segmentation showed lower but clinically acceptable performance ( >72%), likely due to complex radiological patterns. Disease-specific DL segmentation models exhibited high accuracy, particularly for PM and PTB. While IPA and BP models require refinement, all demonstrated cross-disease utility, suggesting immediate clinical value for preliminary lesion annotation. Future efforts should enhance datasets and optimise models for intricate cases.

Deep Learning Estimation of Small Airway Disease from Inspiratory Chest Computed Tomography: Clinical Validation, Repeatability, and Associations with Adverse Clinical Outcomes in Chronic Obstructive Pulmonary Disease.

Chaudhary MFA, Awan HA, Gerard SE, Bodduluri S, Comellas AP, Barjaktarevic IZ, Barr RG, Cooper CB, Galban CJ, Han MK, Curtis JL, Hansel NN, Krishnan JA, Menchaca MG, Martinez FJ, Ohar J, Vargas Buonfiglio LG, Paine R, Bhatt SP, Hoffman EA, Reinhardt JM

pubmed logopapersJul 1 2025
<b>Rationale:</b> Quantifying functional small airway disease (fSAD) requires additional expiratory computed tomography (CT) scans, limiting clinical applicability. Artificial intelligence (AI) could enable fSAD quantification from chest CT scans at total lung capacity (TLC) alone (fSAD<sup>TLC</sup>). <b>Objectives:</b> To evaluate an AI model for estimating fSAD<sup>TLC</sup>, compare it with dual-volume parametric response mapping fSAD (fSAD<sup>PRM</sup>), and assess its clinical associations and repeatability in chronic obstructive pulmonary disease (COPD). <b>Methods:</b> We analyzed 2,513 participants from SPIROMICS (the Subpopulations and Intermediate Outcome Measures in COPD Study). Using a randomly sampled subset (<i>n</i> = 1,055), we developed a generative model to produce virtual expiratory CT scans for estimating fSAD<sup>TLC</sup> in the remaining 1,458 SPIROMICS participants. We compared fSAD<sup>TLC</sup> with dual-volume fSAD<sup>PRM</sup>. We investigated univariate and multivariable associations of fSAD<sup>TLC</sup> with FEV<sub>1</sub>, FEV<sub>1</sub>/FVC ratio, 6-minute-walk distance, St. George's Respiratory Questionnaire score, and FEV<sub>1</sub> decline. The results were validated in a subset of patients from the COPDGene (Genetic Epidemiology of COPD) study (<i>n</i> = 458). Multivariable models were adjusted for age, race, sex, body mass index, baseline FEV<sub>1</sub>, smoking pack-years, smoking status, and percent emphysema. <b>Measurements and Main Results:</b> Inspiratory fSAD<sup>TLC</sup> showed a strong correlation with fSAD<sup>PRM</sup> in SPIROMICS (Pearson's <i>R</i> = 0.895) and COPDGene (<i>R</i> = 0.897) cohorts. Higher fSAD<sup>TLC</sup> levels were significantly associated with lower lung function, including lower postbronchodilator FEV<sub>1</sub> (in liters) and FEV<sub>1</sub>/FVC ratio, and poorer quality of life reflected by higher total St. George's Respiratory Questionnaire scores independent of percent CT emphysema. In SPIROMICS, individuals with higher fSAD<sup>TLC</sup> experienced an annual decline in FEV<sub>1</sub> of 1.156 ml (relative decrease; 95% confidence interval [CI], 0.613-1.699; <i>P</i> < 0.001) per year for every 1% increase in fSAD<sup>TLC</sup>. The rate of decline in the COPDGene cohort was slightly lower at 0.866 ml/yr (relative decrease; 95% CI, 0.345-1.386; <i>P</i> < 0.001) per 1% increase in fSAD<sup>TLC</sup>. Inspiratory fSAD<sup>TLC</sup> demonstrated greater consistency between repeated measurements, with a higher intraclass correlation coefficient of 0.99 (95% CI, 0.98-0.99) compared with fSAD<sup>PRM</sup> (0.83; 95% CI, 0.76-0.88). <b>Conclusions:</b> Small airway disease can be reliably assessed from a single inspiratory CT scan using generative AI, eliminating the need for an additional expiratory CT scan. fSAD estimation from inspiratory CT correlates strongly with fSAD<sup>PRM</sup>, demonstrates a significant association with FEV<sub>1</sub> decline, and offers greater repeatability.

An efficient attention Densenet with LSTM for lung disease detection and classification using X-ray images supported by adaptive R2-Unet-based image segmentation.

Betha SK, Dev DR, Sunkara K, Kodavanti PV, Putta A

pubmed logopapersJul 1 2025
Lung diseases represent one of the most prevalent health challenges globally, necessitating accurate diagnosis to improve patient outcomes. This work presents a novel deep learning-aided lung disease classification framework comprising three key phases: image acquisition, segmentation, and classification. Initially, chest X-ray images are taken from standard datasets. The lung regions are segmented using an Adaptive Recurrent Residual U-Net (AR2-UNet), whose parameters are optimised using Enhanced Pufferfish Optimisation Algorithm (EPOA) to enhance segmentation accuracy. The segmented images are processed using "Attention-based Densenet with Long Short Term Memory(ADNet-LSTM)" for robust categorisation. Investigational results demonstrate that the proposed model achieves the highest classification accuracy of 93.92%, significantly outperforming several baseline models including ResNet with 90.77%, Inception with 89.55%, DenseNet with 89.66%, and "Long Short Term Memory (LSTM)" with 91.79%. Thus, the proposed framework offers a dependable and efficient solution for lung disease detection, supporting clinicians in early and accurate diagnosis.

Deep learning radiomics and mediastinal adipose tissue-based nomogram for preoperative prediction of postoperative‌ brain metastasis risk in non-small cell lung cancer.

Niu Y, Jia HB, Li XM, Huang WJ, Liu PP, Liu L, Liu ZY, Wang QJ, Li YZ, Miao SD, Wang RT, Duan ZX

pubmed logopapersJul 1 2025
Brain metastasis (BM) significantly affects the prognosis of non-small cell lung cancer (NSCLC) patients. Increasing evidence suggests that adipose tissue influences cancer progression and metastasis. This study aimed to develop a predictive nomogram integrating mediastinal fat area (MFA) and deep learning (DL)-derived tumor characteristics to stratify postoperative‌ BM risk in NSCLC patients. A retrospective cohort of 585 surgically resected NSCLC patients was analyzed. Preoperative computed tomography (CT) scans were utilized to quantify MFA using ImageJ software (radiologist-validated measurements). Concurrently, a DL algorithm extracted tumor radiomic features, generating a deep learning brain metastasis score (DLBMS). Multivariate logistic regression identified independent BM predictors, which were incorporated into a nomogram. Model performance was assessed via area under the receiver operating characteristic curve (AUC), calibration plots, integrated discrimination improvement (IDI), net reclassification improvement (NRI), and decision curve analysis (DCA). Multivariate analysis identified N stage, EGFR mutation status, MFA, and DLBMS as independent predictors of BM. The nomogram achieved superior discriminative capacity (AUC: 0.947 in the test set), significantly outperforming conventional models. MFA contributed substantially to predictive accuracy, with IDI and NRI values confirming its incremental utility (IDI: 0.123, <i>P</i> < 0.001; NRI: 0.386, <i>P</i> = 0.023). Calibration analysis demonstrated strong concordance between predicted and observed BM probabilities, while DCA confirmed clinical net benefit across risk thresholds. This DL-enhanced nomogram, incorporating MFA and tumor radiomics, represents a robust and clinically useful tool for preoperative prediction of postoperative BM risk in NSCLC. The integration of adipose tissue metrics with advanced imaging analytics advances personalized prognostic assessment in NSCLC patients. The online version contains supplementary material available at 10.1186/s12885-025-14466-5.
Page 13 of 42415 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.