Sort by:
Page 127 of 1621612 results

Deep learning-based MRI reconstruction with Artificial Fourier Transform Network (AFTNet).

Yang Y, Zhang Y, Li Z, Tian JS, Dagommer M, Guo J

pubmed logopapersJun 1 2025
Deep complex-valued neural networks (CVNNs) provide a powerful way to leverage complex number operations and representations and have succeeded in several phase-based applications. However, previous networks have not fully explored the impact of complex-valued networks in the frequency domain. Here, we introduce a unified complex-valued deep learning framework - Artificial Fourier Transform Network (AFTNet) - which combines domain-manifold learning and CVNNs. AFTNet can be readily used to solve image inverse problems in domain transformation, especially for accelerated magnetic resonance imaging (MRI) reconstruction and other applications. While conventional methods typically utilize magnitude images or treat the real and imaginary components of k-space data as separate channels, our approach directly processes raw k-space data in the frequency domain, utilizing complex-valued operations. This allows for a mapping between the frequency (k-space) and image domain to be determined through cross-domain learning. We show that AFTNet achieves superior accelerated MRI reconstruction compared to existing approaches. Furthermore, our approach can be applied to various tasks, such as denoised magnetic resonance spectroscopy (MRS) reconstruction and datasets with various contrasts. The AFTNet presented here is a valuable preprocessing component for different preclinical studies and provides an innovative alternative for solving inverse problems in imaging and spectroscopy. The code is available at: https://github.com/yanting-yang/AFT-Net.

Toward Noninvasive High-Resolution In Vivo pH Mapping in Brain Tumors by <sup>31</sup>P-Informed deepCEST MRI.

Schüre JR, Rajput J, Shrestha M, Deichmann R, Hattingen E, Maier A, Nagel AM, Dörfler A, Steidl E, Zaiss M

pubmed logopapersJun 1 2025
The intracellular pH (pH<sub>i</sub>) is critical for understanding various pathologies, including brain tumors. While conventional pH<sub>i</sub> measurement through <sup>31</sup>P-MRS suffers from low spatial resolution and long scan times, <sup>1</sup>H-based APT-CEST imaging offers higher resolution with shorter scan times. This study aims to directly predict <sup>31</sup>P-pH<sub>i</sub> maps from CEST data by using a fully connected neuronal network. Fifteen tumor patients were scanned on a 3-T Siemens PRISMA scanner and received <sup>1</sup>H-based CEST and T1 measurement, as well as <sup>31</sup>P-MRS. A neural network was trained voxel-wise on CEST and T1 data to predict <sup>31</sup>P-pH<sub>i</sub> values, using data from 11 patients for training and 4 for testing. The predicted pH<sub>i</sub> maps were additionally down-sampled to the original the <sup>31</sup>P-pH<sub>i</sub> resolution, to be able to calculate the RMSE and analyze the correlation, while higher resolved predictions were compared with conventional CEST metrics. The results demonstrated a general correspondence between the predicted deepCEST pH<sub>i</sub> maps and the measured <sup>31</sup>P-pH<sub>i</sub> in test patients. However, slight discrepancies were also observed, with a RMSE of 0.04 pH units in tumor regions. High-resolution predictions revealed tumor heterogeneity and features not visible in conventional CEST data, suggesting the model captures unique pH information and is not simply a T1 segmentation. The deepCEST pH<sub>i</sub> neural network enables the APT-CEST hidden pH-sensitivity and offers pH<sub>i</sub> maps with higher spatial resolution in shorter scan time compared with <sup>31</sup>P-MRS. Although this approach is constrained by the limitations of the acquired data, it can be extended with additional CEST features for future studies, thereby offering a promising approach for 3D pH imaging in a clinical environment.

An Optimized Framework of QSM Mask Generation Using Deep Learning: QSMmask-Net.

Lee G, Jung W, Sakaie KE, Oh SH

pubmed logopapersJun 1 2025
Quantitative susceptibility mapping (QSM) provides the spatial distribution of magnetic susceptibility within tissues through sequential steps: phase unwrapping and echo combination, mask generation, background field removal, and dipole inversion. Accurate mask generation is crucial, as masks excluding regions outside the brain and without holes are necessary to minimize errors and streaking artifacts during QSM reconstruction. Variations in susceptibility values can arise from different mask generation methods, highlighting the importance of optimizing mask creation. In this study, we propose QSMmask-net, a deep neural network-based method for generating precise QSM masks. QSMmask-net achieved the highest Dice score compared to other mask generation methods. Mean susceptibility values using QSMmask-net masks showed the lowest differences from manual masks (ground truth) in simulations and healthy controls (no significant difference, p > 0.05). Linear regression analysis confirmed a strong correlation with manual masks for hemorrhagic lesions (slope = 0.9814 ± 0.007, intercept = 0.0031 ± 0.001, R<sup>2</sup> = 0.9992, p < 0.05). We have demonstrated that mask generation methods can affect the susceptibility value estimations. QSMmask-net reduces the labor required for mask generation while providing mask quality comparable to manual methods. The proposed method enables users without specialized expertise to create optimized masks, potentially broadening QSM applicability efficiently.

Accelerated High-resolution T1- and T2-weighted Breast MRI with Deep Learning Super-resolution Reconstruction.

Mesropyan N, Katemann C, Leutner C, Sommer A, Isaak A, Weber OM, Peeters JM, Dell T, Bischoff L, Kuetting D, Pieper CC, Lakghomi A, Luetkens JA

pubmed logopapersJun 1 2025
To assess the performance of an industry-developed deep learning (DL) algorithm to reconstruct low-resolution Cartesian T1-weighted dynamic contrast-enhanced (T1w) and T2-weighted turbo-spin-echo (T2w) sequences and compare them to standard sequences. Female patients with indications for breast MRI were included in this prospective study. The study protocol at 1.5 Tesla MRI included T1w and T2w. Both sequences were acquired in standard resolution (T1<sub>S</sub> and T2<sub>S</sub>) and in low-resolution with following DL reconstructions (T1<sub>DL</sub> and T2<sub>DL</sub>). For DL reconstruction, two convolutional networks were used: (1) Adaptive-CS-Net for denoising with compressed sensing, and (2) Precise-Image-Net for resolution upscaling of previously downscaled images. Overall image quality was assessed using 5-point-Likert scale (from 1=non-diagnostic to 5=excellent). Apparent signal-to-noise (aSNR) and contrast-to-noise (aCNR) ratios were calculated. Breast Imaging Reporting and Data System (BI-RADS) agreement between different sequence types was assessed. A total of 47 patients were included (mean age, 58±11 years). Acquisition time for T1<sub>DL</sub> and T2<sub>DL</sub> were reduced by 51% (44 vs. 90 s per dynamic phase) and 46% (102 vs. 192 s), respectively. T1<sub>DL</sub> and T2<sub>DL</sub> showed higher overall image quality (e.g., 4 [IQR, 4-4] for T1<sub>S</sub> vs. 5 [IQR, 5-5] for T1<sub>DL</sub>, P<0.001). Both, T1<sub>DL</sub> and T2<sub>DL</sub> revealed higher aSNR and aCNR than T1<sub>S</sub> and T2<sub>S</sub> (e.g., aSNR: 32.35±10.23 for T2<sub>S</sub> vs. 27.88±6.86 for T2<sub>DL</sub>, P=0.014). Cohen k agreement by BI-RADS assessment was excellent (0.962, P<0.001). DL for denoising and resolution upscaling reduces acquisition time and improves image quality for T1w and T2w breast MRI.

Neuroimaging and machine learning in eating disorders: a systematic review.

Monaco F, Vignapiano A, Di Gruttola B, Landi S, Panarello E, Malvone R, Palermo S, Marenna A, Collantoni E, Celia G, Di Stefano V, Meneguzzo P, D'Angelo M, Corrivetti G, Steardo L

pubmed logopapersJun 1 2025
Eating disorders (EDs), including anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED), are complex psychiatric conditions with high morbidity and mortality. Neuroimaging and machine learning (ML) represent promising approaches to improve diagnosis, understand pathophysiological mechanisms, and predict treatment response. This systematic review aimed to evaluate the application of ML techniques to neuroimaging data in EDs. Following PRISMA guidelines (PROSPERO registration: CRD42024628157), we systematically searched PubMed and APA PsycINFO for studies published between 2014 and 2024. Inclusion criteria encompassed human studies using neuroimaging and ML methods applied to AN, BN, or BED. Data extraction focused on study design, imaging modalities, ML techniques, and performance metrics. Quality was assessed using the GRADE framework and the ROBINS-I tool. Out of 185 records screened, 5 studies met the inclusion criteria. Most applied support vector machines (SVMs) or other supervised ML models to structural MRI or diffusion tensor imaging data. Cortical thickness alterations in AN and diffusion-based metrics effectively distinguished ED subtypes. However, all studies were observational, heterogeneous, and at moderate to serious risk of bias. Sample sizes were small, and external validation was lacking. ML applied to neuroimaging shows potential for improving ED characterization and outcome prediction. Nevertheless, methodological limitations restrict generalizability. Future research should focus on larger, multicenter, and multimodal studies to enhance clinical applicability. Level IV, multiple observational studies with methodological heterogeneity and moderate to serious risk of bias.

Deep Learning in Knee MRI: A Prospective Study to Enhance Efficiency, Diagnostic Confidence and Sustainability.

Reschke P, Gotta J, Gruenewald LD, Bachir AA, Strecker R, Nickel D, Booz C, Martin SS, Scholtz JE, D'Angelo T, Dahm D, Solim LA, Konrad P, Mahmoudi S, Bernatz S, Al-Saleh S, Hong QAL, Sommer CM, Eichler K, Vogl TJ, Haberkorn SM, Koch V

pubmed logopapersJun 1 2025
The objective of this study was to evaluate a combination of deep learning (DL)-reconstructed parallel acquisition technique (PAT) and simultaneous multislice (SMS) acceleration imaging in comparison to conventional knee imaging. Adults undergoing knee magnetic resonance imaging (MRI) with DL-enhanced acquisitions were prospectively analyzed from December 2023 to April 2024. The participants received T1 without fat saturation and fat-suppressed PD-weighted TSE pulse sequences using conventional two-fold PAT (P2) and either DL-enhanced four-fold PAT (P4) or a combination of DL-enhanced four-fold PAT with two-fold SMS acceleration (P4S2). Three independent readers assessed image quality, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and radiomics features. 34 participants (mean age 45±17years; 14 women) were included who underwent P4S2, P4, and P2 imaging. Both P4S2 and P4 demonstrated higher CNR and SNR values compared to P2 (P<.001). P4 was diagnostically inferior to P2 only in the visualization of cartilage damage (P<.005), while P4S2 consistently outperformed P2 in anatomical delineation across all evaluated structures and raters (P<.05). Radiomics analysis revealed significant differences in contrast and gray-level characteristics among P2, P4, and P4S2 (P<.05). P4 reduced time by 31% and P4S2 by 41% compared to P2 (P<.05). P4S2 DL acceleration offers significant advancements over P4 and P2 in knee MRI, combining superior image quality and improved anatomical delineation at significant time reduction. Its improvements in anatomical delineation, energy consumption, and workforce optimization make P4S2 a significant step forward.

Habitat Radiomics Based on MRI for Predicting Metachronous Liver Metastasis in Locally Advanced Rectal Cancer: a Two‑center Study.

Shi S, Jiang T, Liu H, Wu Y, Singh A, Wang Y, Xie J, Li X

pubmed logopapersJun 1 2025
This study aimed to explore the feasibility of using habitat radiomics based on magnetic resonance imaging (MRI) to predict metachronous liver metastasis (MLM) in locally advanced rectal cancer (LARC) patients. A nomogram was developed by integrating multiple factors to enhance predictive accuracy. Retrospective data from 385 LARC patients across two centers were gathered. The data from Center 1 were split into a training set of 203 patients and an internal validation set of 87 patients, while Center 2 provided an external test set of 95 patients. K - means clustering was used on T2 - weighted images, and the region of interest was extended at different thicknesses. After feature extraction and selection, four machine - learning algorithms were utilized to build radiomics models. A nomogram was created by combining habitat radiomics, conventional radiomics, and clinical independent predictors. Model performance was evaluated by the AUC, and clinical utility was assessed through calibration curve and DCA. Habitat radiomics outperformed other single models in predicting MLM, with AUCs of 0.926, 0.864, and 0.851 in respective sets. The integrated nomogram achieved even higher AUCs of 0.959, 0.925, and 0.889. DCA and calibration curve analysis showed its high net benefit and good calibration. MRI - based habitat radiomics can effectively predict MLM in LARC patients. The integrated nomogram has optimal predictive performance and improves model accuracy significantly.

AO Spine Clinical Practice Recommendations for Diagnosis and Management of Degenerative Cervical Myelopathy: Evidence Based Decision Making - A Review of Cutting Edge Recent Literature Related to Degenerative Cervical Myelopathy.

Fehlings MG, Evaniew N, Ter Wengel PV, Vedantam A, Guha D, Margetis K, Nouri A, Ahmed AI, Neal CJ, Davies BM, Ganau M, Wilson JR, Martin AR, Grassner L, Tetreault L, Rahimi-Movaghar V, Marco R, Harrop J, Guest J, Alvi MA, Pedro KM, Kwon BK, Fisher CG, Kurpad SN

pubmed logopapersJun 1 2025
Study DesignLiterature review of key topics related to degenerative cervical myelopathy (DCM) with critical appraisal and clinical recommendations.ObjectiveThis article summarizes several key current topics related to the management of DCM.MethodsRecent literature related to the management of DCM was reviewed. Four articles were selected and critically appraised. Recommendations were graded as Strong or Conditional.ResultsArticle 1: The Relationship Between pre-operative MRI Signal Intensity and outcomes. <b>Conditional</b> recommendation to use diffusion-weighted imaging MR signal changes in the cervical cord to evaluate prognosis following surgical intervention for DCM. Article 2: Efficacy and Safety of Surgery for Mild DCM. <b>Conditional</b> recommendation that surgery is a valid option for mild DCM with favourable clinical outcomes. Article 3: Effect of Ventral vs Dorsal Spinal Surgery on Patient-Reported Physical Functioning in Patients With Cervical Spondylotic Myelopathy: A Randomized Clinical Trial. <b>Strong</b> recommendation that there is equipoise in the outcomes of anterior vs posterior surgical approaches in cases where either technique could be used. Article 4: Machine learning-based cluster analysis of DCM phenotypes. <b>Conditional</b> recommendation that clinicians consider pain, medical frailty, and the impact on health-related quality of life when counselling patients.ConclusionsDCM requires a multidimensional assessment including neurological dysfunction, pain, impact on health-related quality of life, medical frailty and MR imaging changes in the cord. Surgical treatment is effective and is a valid option for mild DCM. In patients where either anterior or posterior surgical approaches can be used, both techniques afford similar clinical benefit albeit with different complication profiles.

Efficient slice anomaly detection network for 3D brain MRI Volume.

Zhang Z, Mohsenzadeh Y

pubmed logopapersJun 1 2025
Current anomaly detection methods excel with benchmark industrial data but struggle with natural images and medical data due to varying definitions of 'normal' and 'abnormal.' This makes accurate identification of deviations in these fields particularly challenging. Especially for 3D brain MRI data, all the state-of-the-art models are reconstruction-based with 3D convolutional neural networks which are memory-intensive, time-consuming and producing noisy outputs that require further post-processing. We propose a framework called Simple Slice-based Network (SimpleSliceNet), which utilizes a model pre-trained on ImageNet and fine-tuned on a separate MRI dataset as a 2D slice feature extractor to reduce computational cost. We aggregate the extracted features to perform anomaly detection tasks on 3D brain MRI volumes. Our model integrates a conditional normalizing flow to calculate log likelihood of features and employs the contrastive loss to enhance anomaly detection accuracy. The results indicate improved performance, showcasing our model's remarkable adaptability and effectiveness when addressing the challenges exists in brain MRI data. In addition, for the large-scale 3D brain volumes, our model SimpleSliceNet outperforms the state-of-the-art 2D and 3D models in terms of accuracy, memory usage and time consumption. Code is available at: https://github.com/Jarvisarmy/SimpleSliceNet.
Page 127 of 1621612 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.