Sort by:
Page 122 of 1411403 results

Deep learning reconstruction enhances tophus detection in a dual-energy CT phantom study.

Schmolke SA, Diekhoff T, Mews J, Khayata K, Kotlyarov M

pubmed logopapersMay 28 2025
This study aimed to compare two deep learning reconstruction (DLR) techniques (AiCE mild; AiCE strong) with two established methods-iterative reconstruction (IR) and filtered back projection (FBP)-for the detection of monosodium urate (MSU) in dual-energy computed tomography (DECT). An ex vivo bio-phantom and a raster phantom were prepared by inserting syringes containing different MSU concentrations and scanned in a 320-rows volume DECT scanner at different tube currents. The scans were reconstructed in a soft tissue kernel using the four reconstruction techniques mentioned above, followed by quantitative assessment of MSU volumes and image quality parameters, i.e., signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Both DLR techniques outperformed conventional IR and FBP in terms of volume detection and image quality. Notably, unlike IR and FBP, the two DLR methods showed no positive correlation of the MSU detection rate with the CT dose index (CTDIvol) in the bio-phantom. Our study highlights the potential of DLR for DECT imaging in gout, where it offers enhanced detection sensitivity, improved image contrast, reduced image noise, and lower radiation exposure. Further research is needed to assess the clinical reliability of this approach.

C2 pars interarticularis length on the side of high-riding vertebral artery with implications for pars screw insertion.

Klepinowski T, Kałachurska M, Chylewski M, Żyłka N, Taterra D, Łątka K, Pala B, Poncyljusz W, Sagan L

pubmed logopapersMay 28 2025
C2 pars interarticularis length (C2PIL) required for pars screws has not been thoroughly studied in subjects with high-riding vertebral artery (HRVA). We aimed to measure C2PIL specifically on the sides with HRVA, define short pars, optimal pars screw length, and incorporate C2PIL into HRVA clusters using machine learning algorithms. A clinical anatomical study based on cervical CT was conducted with STROBE-compliant case-control design. HRVA was defined as accepted. Interobserver, intraobserver, and inter-software agreement coefficients for HRVA were adopted from our previous study. Sample size was estimated with pwr package and C2PIL was measured. Cut-off value and predictive statistics of C2PIL for HRVA were computed with cutpointr package. Unsupervised machine learning clustering was applied with all three pars parameters. 345 potential screw insertion sites (PSIS) were grouped as HRVA (143 PSIS in 110 subjects) or controls (202 PSIS in 101 subjects). 68% participants were females. The median C2PIL in HRVA group was 13.7 mm with interquartile range (IQR) of 1.7, whereas in controls it was 19.8 mm (IQR = 2.7). The optimal cut-off value of C2PIL discriminating HRVA was 16.06 mm with sensitivity of 96.5% and specificity of 99.3%. Therefore, clinically important short pars was defined as ≤ 16 mm rounding to the nearest screw length. Two clusters were created incorportating three parameters of pars interarticularis. In preoperative planning, the identified C2PIL cut-off of ≤ 16 mm may assist surgeons in early recognition of HRVA. The average screw lengths of 14 mm for bicortical and 12 mm for safer unicortical purchase in HRVA cases may serve as practical intraoperative reference points, particularly in situations requiring rapid decision-making or when navigation systems are unavailable. Moreover, C2PIL complements the classic HRVA parameters within the dichotomized clustering framework.

A vessel bifurcation landmark pair dataset for abdominal CT deformable image registration (DIR) validation.

Criscuolo ER, Zhang Z, Hao Y, Yang D

pubmed logopapersMay 28 2025
Deformable image registration (DIR) is an enabling technology in many diagnostic and therapeutic tasks. Despite this, DIR algorithms have limited clinical use, largely due to a lack of benchmark datasets for quality assurance during development. DIRs of intra-patient abdominal CTs are among the most challenging registration scenarios due to significant organ deformations and inconsistent image content. To support future algorithm development, here we introduce our first-of-its-kind abdominal CT DIR benchmark dataset, comprising large numbers of highly accurate landmark pairs on matching blood vessel bifurcations. Abdominal CT image pairs of 30 patients were acquired from several publicly available repositories as well as the authors' institution with IRB approval. The two CTs of each pair were originally acquired for the same patient but on different days. An image processing workflow was developed and applied to each CT image pair: (1) Abdominal organs were segmented with a deep learning model, and image intensity within organ masks was overwritten. (2) Matching image patches were manually identified between two CTs of each image pair. (3) Vessel bifurcation landmarks were labeled on one image of each image patch pair. (4) Image patches were deformably registered, and landmarks were projected onto the second image. (5) Landmark pair locations were refined manually or with an automated process. This workflow resulted in 1895 total landmark pairs, or 63 per case on average. Estimates of the landmark pair accuracy using digital phantoms were 0.7 mm ± 1.2 mm. The data are published in Zenodo at https://doi.org/10.5281/zenodo.14362785. Instructions for use can be found at https://github.com/deshanyang/Abdominal-DIR-QA. This dataset is a first-of-its-kind for abdominal DIR validation. The number, accuracy, and distribution of landmark pairs will allow for robust validation of DIR algorithms with precision beyond what is currently available.

Comparative Analysis of Machine Learning Models for Lung Cancer Mutation Detection and Staging Using 3D CT Scans

Yiheng Li, Francisco Carrillo-Perez, Mohammed Alawad, Olivier Gevaert

arxiv logopreprintMay 28 2025
Lung cancer is the leading cause of cancer mortality worldwide, and non-invasive methods for detecting key mutations and staging are essential for improving patient outcomes. Here, we compare the performance of two machine learning models - FMCIB+XGBoost, a supervised model with domain-specific pretraining, and Dinov2+ABMIL, a self-supervised model with attention-based multiple-instance learning - on 3D lung nodule data from the Stanford Radiogenomics and Lung-CT-PT-Dx cohorts. In the task of KRAS and EGFR mutation detection, FMCIB+XGBoost consistently outperformed Dinov2+ABMIL, achieving accuracies of 0.846 and 0.883 for KRAS and EGFR mutations, respectively. In cancer staging, Dinov2+ABMIL demonstrated competitive generalization, achieving an accuracy of 0.797 for T-stage prediction in the Lung-CT-PT-Dx cohort, suggesting SSL's adaptability across diverse datasets. Our results emphasize the clinical utility of supervised models in mutation detection and highlight the potential of SSL to improve staging generalization, while identifying areas for enhancement in mutation sensitivity.

Fully automated Bayesian analysis for quantifying the extent and distribution of pulmonary perfusion changes on CT pulmonary angiography in CTEPH.

Suchanek V, Jakubicek R, Hrdlicka J, Novak M, Miksova L, Jansa P, Burgetova A, Lambert L

pubmed logopapersMay 28 2025
This work aimed to develop an automated method for quantifying the distribution and severity of perfusion changes on CT pulmonary angiography (CTPA) in patients with chronic thromboembolic pulmonary hypertension (CTEPH) and to assess their associations with clinical parameters and expert annotations. Following automated segmentation of the chest, a machine-learning model assuming three distributions of attenuation in the pulmonary parenchyma (hyperemic, normal, and oligemic) was fitted to the attenuation histogram of CTPA images using Bayesian analysis. The proportion of each component, its spatial heterogeneity (entropy), and center-to-periphery distribution of the attenuation were calculated and correlated with the findings on CTPA semi-quantitatively evaluated by radiologists and with clinical function tests. CTPA scans from 52 patients (mean age, 65.2 ± 13.0 years; 27 men) diagnosed with CTEPH were analyzed. An inverse correlation was observed between the proportion of normal parenchyma and brain natriuretic propeptide (proBNP, ρ = -0.485, p = 0.001), mean pulmonary arterial pressure (ρ = -0.417, p = 0.002) and pulmonary vascular resistance (ρ = -0.556, p < 0.0001), mosaic attenuation (ρ = -0.527, p < 0.0001), perfusion centralization (ρ = -0.489, p = < 0.0001), and right ventricular diameter (ρ = -0.451, p = 0.001). The entropy of hyperemic parenchyma showed a positive correlation with the pulmonary wedge pressure (ρ = 0.402, p = 0.003). The slope of center-to-periphery attenuation distribution correlated with centralization (ρ = -0.477, p < 0.0001), and with proBNP (ρ = -0.463, p = 0.002). This study validates an automated system that leverages Bayesian analysis to quantify the severity and distribution of perfusion changes in CTPA. The results show the potential of this method to support clinical evaluations of CTEPH by providing reproducible and objective measures. Question This study introduces an automated method for quantifying the extent and spatial distribution of pulmonary perfusion abnormalities in CTEPH using variational Bayesian estimation. Findings Quantitative measures describing the extent, heterogeneity, and distribution of perfusion changes demonstrate strong correlations with key clinical hemodynamic indicators. Clinical relevance The automated quantification of perfusion changes aligns closely with radiologists' evaluations, delivering a standardized, reproducible measure with clinical relevance.

Deep learning radiomics fusion model to predict visceral pleural invasion of clinical stage IA lung adenocarcinoma: a multicenter study.

Zhao J, Wang T, Wang B, Satishkumar BM, Ding L, Sun X, Chen C

pubmed logopapersMay 28 2025
To assess the predictive performance, risk stratification capabilities, and auxiliary diagnostic utility of radiomics, deep learning, and fusion models in identifying visceral pleural invasion (VPI) in lung adenocarcinoma. A total of 449 patients (female:male, 263:186; 59.8 ± 10.5 years) diagnosed with clinical IA stage lung adenocarcinoma (LAC) from two distinct hospitals were enrolled in the study and divided into a training cohort (n = 289) and an external test cohort (n = 160). The fusion models were constructed from the feature level and the decision level respectively. A comprehensive analysis was conducted to assess the prediction ability and prognostic value of radiomics, deep learning, and fusion models. The diagnostic performance of radiologists of varying seniority with and without the assistance of the optimal model was compared. The late fusion model demonstrated superior diagnostic performance (AUC = 0.812) compared to clinical (AUC = 0.650), radiomics (AUC = 0.710), deep learning (AUC = 0.770), and the early fusion models (AUC = 0.586) in the external test cohort. The multivariate Cox regression analysis showed that the VPI status predicted by the late fusion model were independently associated with patient disease-free survival (DFS) (p = 0.044). Furthermore, model assistance significantly improved radiologist performance, particularly for junior radiologists; the AUC increased by 0.133 (p < 0.001) reaching levels comparable to the senior radiologist without model assistance (AUC: 0.745 vs. 0.730, p = 0.790). The proposed decision-level (late fusion) model significantly reducing the risk of overfitting and demonstrating excellent robustness in multicenter external validation, which can predict VPI status in LAC, aid in prognostic stratification, and assist radiologists in achieving higher diagnostic performance.

ToPoMesh: accurate 3D surface reconstruction from CT volumetric data via topology modification.

Chen J, Zhu Q, Xie B, Li T

pubmed logopapersMay 27 2025
Traditional computed tomography (CT) methods for 3D reconstruction face resolution limitations and require time-consuming post-processing workflows. While deep learning techniques improve the accuracy of segmentation, traditional voxel-based segmentation and surface reconstruction pipelines tend to introduce artifacts such as disconnected regions, topological inconsistencies, and stepped distortions. To overcome these challenges, we propose ToPoMesh, an end-to-end 3D mesh reconstruction deep learning framework for direct reconstruction of high-fidelity surface meshes from CT volume data. To address the existing problems, our approach introduces three core innovations: (1) accurate local and global shape modeling by preserving and enhancing local feature information through residual connectivity and self-attention mechanisms in graph convolutional networks; (2) an adaptive variant density (Avd) mesh de-pooling strategy, which dynamically optimizes the vertex distribution; (3) a topology modification module that iteratively prunes the error surfaces and boundary smoothing via variable regularity terms to obtain finer mesh surfaces. Experiments on the LiTS, MSD pancreas tumor, MSD hippocampus, and MSD spleen datasets demonstrate that ToPoMesh outperforms state-of-the-art methods. Quantitative evaluations demonstrate a 57.4% reduction in Chamfer distance (liver) and a 0.47% improvement in F-score compared to end-to-end 3D reconstruction methods, while qualitative results confirm enhanced fidelity for thin structures and complex anatomical topologies versus segmentation frameworks. Importantly, our method eliminates the need for manual post-processing, realizes the ability to reconstruct 3D meshes from images, and can provide precise guidance for surgical planning and diagnosis.

Multi-instance Learning as Downstream Task of Self-Supervised Learning-based Pre-trained Model

Koki Matsuishi, Tsuyoshi Okita

arxiv logopreprintMay 27 2025
In deep multi-instance learning, the number of applicable instances depends on the data set. In histopathology images, deep learning multi-instance learners usually assume there are hundreds to thousands instances in a bag. However, when the number of instances in a bag increases to 256 in brain hematoma CT, learning becomes extremely difficult. In this paper, we address this drawback. To overcome this problem, we propose using a pre-trained model with self-supervised learning for the multi-instance learner as a downstream task. With this method, even when the original target task suffers from the spurious correlation problem, we show improvements of 5% to 13% in accuracy and 40% to 55% in the F1 measure for the hypodensity marker classification of brain hematoma CT.

China Protocol for early screening, precise diagnosis, and individualized treatment of lung cancer.

Wang C, Chen B, Liang S, Shao J, Li J, Yang L, Ren P, Wang Z, Luo W, Zhang L, Liu D, Li W

pubmed logopapersMay 27 2025
Early screening, diagnosis, and treatment of lung cancer are pivotal in clinical practice since the tumor stage remains the most dominant factor that affects patient survival. Previous initiatives have tried to develop new tools for decision-making of lung cancer. In this study, we proposed the China Protocol, a complete workflow of lung cancer tailored to the Chinese population, which is implemented by steps including early screening by evaluation of risk factors and three-dimensional thin-layer image reconstruction technique for low-dose computed tomography (Tre-LDCT), accurate diagnosis via artificial intelligence (AI) and novel biomarkers, and individualized treatment through non-invasive molecule visualization strategies. The application of this protocol has improved the early diagnosis and 5-year survival rates of lung cancer in China. The proportion of early-stage (stage I) lung cancer has increased from 46.3% to 65.6%, along with a 5-year survival rate of 90.4%. Moreover, especially for stage IA1 lung cancer, the diagnosis rate has improved from 16% to 27.9%; meanwhile, the 5-year survival rate of this group achieved 97.5%. Thus, here we defined stage IA1 lung cancer, which cohort benefits significantly from early diagnosis and treatment, as the "ultra-early stage lung cancer", aiming to provide an intuitive description for more precise management and survival improvement. In the future, we will promote our findings to multicenter remote areas through medical alliances and mobile health services with the desire to move forward the diagnosis and treatment of lung cancer.

Machine learning-driven imaging data for early prediction of lung toxicity in breast cancer radiotherapy.

Ungvári T, Szabó D, Győrfi A, Dankovics Z, Kiss B, Olajos J, Tőkési K

pubmed logopapersMay 27 2025
One possible adverse effect of breast irradiation is the development of pulmonary fibrosis. The aim of this study was to determine whether planning CT scans can predict which patients are more likely to develop lung lesions after treatment. A retrospective analysis of 242 patient records was performed using different machine learning models. These models showed a remarkable correlation between the occurrence of fibrosis and the hounsfield units of lungs in CT data. Three different classification methods (Tree, Kernel-based, k-Nearest Neighbors) showed predictive values above 60%. The human predictive factor (HPF), a mathematical predictive model, further strengthened the association between lung hounsfield unit (HU) metrics and radiation-induced lung injury (RILI). These approaches optimize radiation treatment plans to preserve lung health. Machine learning models and HPF can also provide effective diagnostic and therapeutic support for other diseases.
Page 122 of 1411403 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.