Sort by:
Page 12 of 31302 results

ACM-UNet: Adaptive Integration of CNNs and Mamba for Efficient Medical Image Segmentation

Jing Huang, Yongkang Zhao, Yuhan Li, Zhitao Dai, Cheng Chen, Qiying Lai

arxiv logopreprintMay 30 2025
The U-shaped encoder-decoder architecture with skip connections has become a prevailing paradigm in medical image segmentation due to its simplicity and effectiveness. While many recent works aim to improve this framework by designing more powerful encoders and decoders, employing advanced convolutional neural networks (CNNs) for local feature extraction, Transformers or state space models (SSMs) such as Mamba for global context modeling, or hybrid combinations of both, these methods often struggle to fully utilize pretrained vision backbones (e.g., ResNet, ViT, VMamba) due to structural mismatches. To bridge this gap, we introduce ACM-UNet, a general-purpose segmentation framework that retains a simple UNet-like design while effectively incorporating pretrained CNNs and Mamba models through a lightweight adapter mechanism. This adapter resolves architectural incompatibilities and enables the model to harness the complementary strengths of CNNs and SSMs-namely, fine-grained local detail extraction and long-range dependency modeling. Additionally, we propose a hierarchical multi-scale wavelet transform module in the decoder to enhance feature fusion and reconstruction fidelity. Extensive experiments on the Synapse and ACDC benchmarks demonstrate that ACM-UNet achieves state-of-the-art performance while remaining computationally efficient. Notably, it reaches 85.12% Dice Score and 13.89mm HD95 on the Synapse dataset with 17.93G FLOPs, showcasing its effectiveness and scalability. Code is available at: https://github.com/zyklcode/ACM-UNet.

Manual and automated facial de-identification techniques for patient imaging with preservation of sinonasal anatomy.

Ding AS, Nagururu NV, Seo S, Liu GS, Sahu M, Taylor RH, Creighton FX

pubmed logopapersMay 29 2025
Facial recognition of reconstructed computed tomography (CT) scans poses patient privacy risks, necessitating reliable facial de-identification methods. Current methods obscure sinuses, turbinates, and other anatomy relevant for otolaryngology. We present a facial de-identification method that preserves these structures, along with two automated workflows for large-volume datasets. A total of 20 adult head CTs from the New Mexico Decedent Image Database were included. Using 3D Slicer, a seed-growing technique was performed to label the skin around the face. This label was dilated bidirectionally to form a 6-mm mask that obscures facial features. This technique was then automated using: (1) segmentation propagation that deforms an atlas head CT and corresponding mask to match other scans and (2) a deep learning model (nnU-Net). Accuracy of these methods against manually generated masks was evaluated with Dice scores and modified Hausdorff distances (mHDs). Manual de-identification resulted in facial match rates of 45.0% (zero-fill), 37.5% (deletion), and 32.5% (re-face). Dice scores for automated face masks using segmentation propagation and nnU-Net were 0.667 ± 0.109 and 0.860 ± 0.029, respectively, with mHDs of 4.31 ± 3.04 mm and 1.55 ± 0.71 mm. Match rates after de-identification using segmentation propagation (zero-fill: 42.5%; deletion: 40.0%; re-face: 35.0%) and nnU-Net (zero-fill: 42.5%; deletion: 35.0%; re-face: 30.0%) were comparable to manual masks. We present a simple facial de-identification approach for head CTs, as well as automated methods for large-scale implementation. These techniques show promise for preventing patient identification while preserving underlying sinonasal anatomy, but further studies using live patient photographs are necessary to fully validate its effectiveness.

Enhanced Pelvic CT Segmentation via Deep Learning: A Study on Loss Function Effects.

Ghaedi E, Asadi A, Hosseini SA, Arabi H

pubmed logopapersMay 29 2025
Effective radiotherapy planning requires precise delineation of organs at risk (OARs), but the traditional manual method is laborious and subject to variability. This study explores using convolutional neural networks (CNNs) for automating OAR segmentation in pelvic CT images, focusing on the bladder, prostate, rectum, and femoral heads (FHs) as an efficient alternative to manual segmentation. Utilizing the Medical Open Network for AI (MONAI) framework, we implemented and compared U-Net, ResU-Net, SegResNet, and Attention U-Net models and explored different loss functions to enhance segmentation accuracy. Our study involved 240 patients for prostate segmentation and 220 patients for the other organs. The models' performance was evaluated using metrics such as the Dice similarity coefficient (DSC), Jaccard index (JI), and the 95th percentile Hausdorff distance (95thHD), benchmarking the results against expert segmentation masks. SegResNet outperformed all models, achieving DSC values of 0.951 for the bladder, 0.829 for the prostate, 0.860 for the rectum, 0.979 for the left FH, and 0.985 for the right FH (p < 0.05 vs. U-Net and ResU-Net). Attention U-Net also excelled, particularly for bladder and rectum segmentation. Experiments with loss functions on SegResNet showed that Dice loss consistently delivered optimal or equivalent performance across OARs, while DiceCE slightly enhanced prostate segmentation (DSC = 0.845, p = 0.0138). These results indicate that advanced CNNs, especially SegResNet, paired with optimized loss functions, provide a reliable, efficient alternative to manual methods, promising improved precision in radiotherapy planning.

A combined attention mechanism for brain tumor segmentation of lower-grade glioma in magnetic resonance images.

Hedibi H, Beladgham M, Bouida A

pubmed logopapersMay 29 2025
Low-grade gliomas (LGGs) are among the most problematic brain tumors to reliably segment in FLAIR MRI, and effective delineation of these lesions is critical for clinical diagnosis, treatment planning, and patient monitoring. Nevertheless, conventional U-Net-based approaches usually suffer from the loss of critical structural details owing to repetitive down-sampling, while the encoder features often retain irrelevant information that is not properly utilized by the decoder. To solve these challenges, this paper offers a dual-attention U-shaped design, named ECASE-Unet, which seamlessly integrates Efficient Channel Attention (ECA) and Squeeze-and-Excitation (SE) blocks in both the encoder and decoder stages. By selectively recalibrating channel-wise information, the model increases diagnostically significant regions of interest and reduces noise. Furthermore, dilated convolutions are introduced at the bottleneck layer to capture multi-scale contextual cues without inflating computational complexity, and dropout regularization is systematically applied to prevent overfitting on heterogeneous data. Experimental results on the Kaggle Low-Grade-Glioma dataset suggest that ECASE-Unet greatly outperforms previous segmentation algorithms, reaching a Dice coefficient of 0.9197 and an Intersection over Union (IoU) of 0.8521. Comprehensive ablation studies further reveal that integrating ECA and SE modules delivers complementing benefits, supporting the model's robust efficacy in precisely identifying LGG boundaries. These findings underline the potential of ECASE-Unet to expedite clinical operations and improve patient outcomes. Future work will focus on improving the model's applicability to new MRI modalities and studying the integration of clinical characteristics for a more comprehensive characterization of brain tumors.

Gaussian random fields as an abstract representation of patient metadata for multimodal medical image segmentation.

Cassidy B, McBride C, Kendrick C, Reeves ND, Pappachan JM, Raad S, Yap MH

pubmed logopapersMay 29 2025
Growing rates of chronic wound occurrence, especially in patients with diabetes, has become a recent concerning trend. Chronic wounds are difficult and costly to treat, and have become a serious burden on health care systems worldwide. Innovative deep learning methods for the detection and monitoring of such wounds have the potential to reduce the impact to patients and clinicians. We present a novel multimodal segmentation method which allows for the introduction of patient metadata into the training workflow whereby the patient data are expressed as Gaussian random fields. Our results indicate that the proposed method improved performance when utilising multiple models, each trained on different metadata categories. Using the Diabetic Foot Ulcer Challenge 2022 test set, when compared to the baseline results (intersection over union = 0.4670, Dice similarity coefficient = 0.5908) we demonstrate improvements of +0.0220 and +0.0229 for intersection over union and Dice similarity coefficient respectively. This paper presents the first study to focus on integrating patient data into a chronic wound segmentation workflow. Our results show significant performance gains when training individual models using specific metadata categories, followed by average merging of prediction masks using distance transforms. All source code for this study is available at: https://github.com/mmu-dermatology-research/multimodal-grf.

ADC-MambaNet: A Lightweight U-Shaped Architecture with Mamba and Multi-Dimensional Priority Attention for Medical Image Segmentation.

Nguyen TN, Ho QH, Nguyen VQ, Pham VT, Tran TT

pubmed logopapersMay 29 2025
Medical image segmentation is becoming a growing crucial step in assisting with disease detection and diagnosis. However, medical images often exhibit complex structures and textures, resulting in the need for highly complex methods. Particularly, when Deep Learning methods are utilized, they often require large-scale pretraining, leading to significant memory demands and increased computational costs. The well-known Convolutional Neural Networks (CNNs) have become the backbone of medical image segmentation tasks thanks to their effective feature extraction abilities. However, they often struggle to capture global context due to the limited sizes of their kernels. To address this, various Transformer-based models have been introduced to learn long-range dependencies through self-attention mechanisms. However, these architectures typically incur relatively high computational complexity.&#xD;Methods: To address the aforementioned challenges, we propose a lightweight and computationally efficient model named ADC-MambaNet, which combines the conventional Depthwise Convolutional layers with the Mamba algorithm that can address the computational complexity of Transformers. In the proposed model, a new feature extractor named Harmonious Mamba-Convolution (HMC) block, and the Multi-Dimensional Priority Attention (MDPA) block have been designed. These blocks enhance the feature extraction process, thereby improving the overall performance of the model. In particular, the mechanisms enable the model to effectively capture local and global patterns from the feature maps while keeping the computational costs low. A novel loss function called the Balanced Normalized Cross Entropy is also introduced, bringing promising performance compared to other losses. Evaluations on five public medical image datasets: ISIC 2018 Lesion Segmentation, PH2, Data Science Bowl 2018, GlaS, and Lung X-ray demonstrate that ADC-MambaNet achieves higher evaluation scores while maintaining compact parameters and low computational complexity.&#xD;Conclusion: ADC-MambaNet offers a promising solution for accurate and efficient medical image segmentation, especially in resource-limited or edge-computing environments. Implementation code will be publicly accessible at: https://github.com/nqnguyen812/mambaseg-model.

Mild to moderate COPD, vitamin D deficiency, and longitudinal bone loss: The MESA study.

Ghotbi E, Hathaway QA, Hadidchi R, Momtazmanesh S, Bancks MP, Bluemke DA, Barr RG, Post WS, Budoff M, Smith BM, Lima JAC, Demehri S

pubmed logopapersMay 29 2025
Despite the established association between chronic obstructive pulmonary disease (COPD) severity and risk of osteoporosis, even after accounting for the known shared confounding variables (e.g., age, smoking, history of exacerbations, steroid use), there is paucity of data on bone loss among mild to moderate COPD, which is more prevalent in the general population. We conducted a longitudinal analysis using data from the Multi-Ethnic Study of Atherosclerosis. Participants with chest CT at Exam 5 (2010-2012) and Exam 6 (2016-2018) were included. Mild to moderate COPD was defined as forced expiratory volume in 1 s (FEV<sub>1</sub>) to forced vital capacity ratio of <0.70 and FEV<sub>1</sub> of 50 % or higher. Vitamin D deficiency was defined as serum vitamin D < 20 ng/mL. We utilized a validated deep learning algorithm to perform automated multilevel segmentation of vertebral bodies (T1-T10) from chest CT and derive 3D volumetric thoracic vertebral BMD measurements at Exam 5 and 6. Of the 1226 participants, 173 had known mild to moderate COPD at baseline, while 1053 had no known COPD. After adjusting for age, race/ethnicity, sex, body mass, index, bisphosphonate use, alcohol consumption, smoking, diabetes, physical activity, C-reactive protein and vitamin D deficiency, mild to moderate COPD was associated with faster decline in BMD (estimated difference, β = -0.38 g/cm<sup>3</sup>/year; 95 % CI: -0.74, -0.02). A significant interaction between COPD and vitamin D deficiency (p = 0.001) prompted stratified analyses. Among participants with vitamin D deficiency (47 % of participants), COPD was associated with faster decline in BMD (-0.64 g/cm<sup>3</sup>/year; 95 % CI: -1.17 to -0.12), whereas no significant association was observed among those with normal vitamin D in both crude and adjusted models. Mild to moderate COPD is associated with longitudinal declines in vertebral BMD exclusively in participants with vitamin D deficiency over 6-year follow-up. Vitamin D deficiency may play a crucial role in bone loss among patients with mild to moderate COPD.

Estimating Total Lung Volume from Pixel-Level Thickness Maps of Chest Radiographs Using Deep Learning.

Dorosti T, Schultheiss M, Schmette P, Heuchert J, Thalhammer J, Gassert FT, Sellerer T, Schick R, Taphorn K, Mechlem K, Birnbacher L, Schaff F, Pfeiffer F, Pfeiffer D

pubmed logopapersMay 28 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To estimate the total lung volume (TLV) from real and synthetic frontal chest radiographs (CXR) on a pixel level using lung thickness maps generated by a U-Net deep learning model. Materials and Methods This retrospective study included 5,959 chest CT scans from two public datasets: the lung nodule analysis 2016 (<i>n</i> = 656) and the Radiological Society of North America (RSNA) pulmonary embolism detection challenge 2020 (<i>n</i> = 5,303). Additionally, 72 participants were selected from the Klinikum Rechts der Isar dataset (October 2018 to December 2019), each with a corresponding chest radiograph taken within seven days. Synthetic radiographs and lung thickness maps were generated using forward projection of CT scans and their lung segmentations. A U-Net model was trained on synthetic radiographs to predict lung thickness maps and estimate TLV. Model performance was assessed using mean squared error (MSE), Pearson correlation coefficient <b>(r)</b>, and two-sided Student's t-distribution. Results The study included 72 participants (45 male, 27 female, 33 healthy: mean age 62 years [range 34-80]; 39 with chronic obstructive pulmonary disease: mean age 69 years [range 47-91]). TLV predictions showed low error rates (MSEPublic-Synthetic = 0.16 L<sup>2</sup>, MSEKRI-Synthetic = 0.20 L<sup>2</sup>, MSEKRI-Real = 0.35 L<sup>2</sup>) and strong correlations with CT-derived reference standard TLV (nPublic-Synthetic = 1,191, r = 0.99, <i>P</i> < .001; nKRI-Synthetic = 72, r = 0.97, <i>P</i> < .001; nKRI-Real = 72, r = 0.91, <i>P</i> < .001). When evaluated on different datasets, the U-Net model achieved the highest performance for TLV estimation on the Luna16 test dataset, with the lowest mean squared error (MSE = 0.09 L<sup>2</sup>) and strongest correlation (<i>r</i> = 0.99, <i>P</i> <.001) compared with CT-derived TLV. Conclusion The U-Net-generated pixel-level lung thickness maps successfully estimated TLV for both synthetic and real radiographs. ©RSNA, 2025.

MAMBO-NET: Multi-Causal Aware Modeling Backdoor-Intervention Optimization for Medical Image Segmentation Network

Ruiguo Yu, Yiyang Zhang, Yuan Tian, Yujie Diao, Di Jin, Witold Pedrycz

arxiv logopreprintMay 28 2025
Medical image segmentation methods generally assume that the process from medical image to segmentation is unbiased, and use neural networks to establish conditional probability models to complete the segmentation task. This assumption does not consider confusion factors, which can affect medical images, such as complex anatomical variations and imaging modality limitations. Confusion factors obfuscate the relevance and causality of medical image segmentation, leading to unsatisfactory segmentation results. To address this issue, we propose a multi-causal aware modeling backdoor-intervention optimization (MAMBO-NET) network for medical image segmentation. Drawing insights from causal inference, MAMBO-NET utilizes self-modeling with multi-Gaussian distributions to fit the confusion factors and introduce causal intervention into the segmentation process. Moreover, we design appropriate posterior probability constraints to effectively train the distributions of confusion factors. For the distributions to effectively guide the segmentation and mitigate and eliminate the Impact of confusion factors on the segmentation, we introduce classical backdoor intervention techniques and analyze their feasibility in the segmentation task. To evaluate the effectiveness of our approach, we conducted extensive experiments on five medical image datasets. The results demonstrate that our method significantly reduces the influence of confusion factors, leading to enhanced segmentation accuracy.

Fully automated Bayesian analysis for quantifying the extent and distribution of pulmonary perfusion changes on CT pulmonary angiography in CTEPH.

Suchanek V, Jakubicek R, Hrdlicka J, Novak M, Miksova L, Jansa P, Burgetova A, Lambert L

pubmed logopapersMay 28 2025
This work aimed to develop an automated method for quantifying the distribution and severity of perfusion changes on CT pulmonary angiography (CTPA) in patients with chronic thromboembolic pulmonary hypertension (CTEPH) and to assess their associations with clinical parameters and expert annotations. Following automated segmentation of the chest, a machine-learning model assuming three distributions of attenuation in the pulmonary parenchyma (hyperemic, normal, and oligemic) was fitted to the attenuation histogram of CTPA images using Bayesian analysis. The proportion of each component, its spatial heterogeneity (entropy), and center-to-periphery distribution of the attenuation were calculated and correlated with the findings on CTPA semi-quantitatively evaluated by radiologists and with clinical function tests. CTPA scans from 52 patients (mean age, 65.2 ± 13.0 years; 27 men) diagnosed with CTEPH were analyzed. An inverse correlation was observed between the proportion of normal parenchyma and brain natriuretic propeptide (proBNP, ρ = -0.485, p = 0.001), mean pulmonary arterial pressure (ρ = -0.417, p = 0.002) and pulmonary vascular resistance (ρ = -0.556, p < 0.0001), mosaic attenuation (ρ = -0.527, p < 0.0001), perfusion centralization (ρ = -0.489, p = < 0.0001), and right ventricular diameter (ρ = -0.451, p = 0.001). The entropy of hyperemic parenchyma showed a positive correlation with the pulmonary wedge pressure (ρ = 0.402, p = 0.003). The slope of center-to-periphery attenuation distribution correlated with centralization (ρ = -0.477, p < 0.0001), and with proBNP (ρ = -0.463, p = 0.002). This study validates an automated system that leverages Bayesian analysis to quantify the severity and distribution of perfusion changes in CTPA. The results show the potential of this method to support clinical evaluations of CTEPH by providing reproducible and objective measures. Question This study introduces an automated method for quantifying the extent and spatial distribution of pulmonary perfusion abnormalities in CTEPH using variational Bayesian estimation. Findings Quantitative measures describing the extent, heterogeneity, and distribution of perfusion changes demonstrate strong correlations with key clinical hemodynamic indicators. Clinical relevance The automated quantification of perfusion changes aligns closely with radiologists' evaluations, delivering a standardized, reproducible measure with clinical relevance.
Page 12 of 31302 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.