Prediction of cerebrospinal fluid intervention in fetal ventriculomegaly via AI-powered normative modelling.
Authors
Affiliations (1)
Affiliations (1)
- From the Department of Radiology & Biomedical Imaging (M.H.Z., S.A.R., P.N., O.G., E.G., A.M.R.), School of Medicine (J.B.B.), Department of Neurologic Surgery (N.G.), and Department of Neurology (D.G.), University of California, San Francisco, CA, USA.
Abstract
Fetal ventriculomegaly (VM) is common and largely benign when isolated. However, it can occasionally progress to hydrocephalus, a more severe condition associated with increased mortality and neurodevelopmental delay that may require surgical postnatal intervention. Accurate differentiation between VM and hydrocephalus is essential but remains challenging, relying on subjective assessment and limited two-dimensional measurements. Deep learning-based segmentation offers a promising solution for objective and reproducible volumetric analysis. This work presents an AI-powered method for segmentation, volume quantification, and classification of the ventricles in fetal brain MRI to predict need for postnatal intervention. This retrospective study included 222 patients with singleton pregnancies. An nnUNet was trained to segment the fetal ventricles on 20 manually segmented, institutional fetal brain MRIs combined with 80 studies from a publicly available dataset. The validated model was then applied to 138 normal fetal brain MRIs to generate a normative reference range across a range of gestational ages (18-36 weeks). Finally it was applied to 64 fetal brains with VM (14 of which required postnatal intervention). ROC curves and AUC to predict VM and need for postnatal intervention were calculated. The nnUNet predicted segmentation of the fetal ventricles in the reference dataset were high quality and accurate (median Dice score 0.96, IQR 0.93-0.99). A normative reference range of ventricular volumes across gestational ages was developed using automated segmentation volumes. The optimal threshold for identifying VM was 2 standard deviations from normal with sensitivity of 92% and specificity of 93% (AUC 0.97, 95% CI 0.91-0.98). When normalized to intracranial volume, fetal ventricular volume was higher and subarachnoid volume lower among those who required postnatal intervention (p<0.001, p=0.003). The optimal threshold for identifying need for postnatal intervention was 11 standard deviations from normal with sensitivity of 86% and specificity of 100% (AUC 0.97, 95% CI 0.86-1.00). This work introduces a deep-learning based method for fast and accurate quantification of ventricular volumes in fetal brain MRI. A normative reference standard derived using this method can predict VM and need for postnatal CSF intervention. Increased ventricular volume is a strong predictor for postnatal intervention. VM = ventriculomegaly, 2D = two-dimensional, 3D = three-dimensional, ROC = receiver operating characteristics, AUC = area under curve.