Sort by:
Page 12 of 25248 results

MRI-Based Diagnostic Model for Alzheimer's Disease Using 3D-ResNet.

Chen D, Yang H, Li H, He X, Mu H

pubmed logopapersMay 12 2025
Alzheimer's disease (AD), a progressive neurodegenerative disorder, is the leading cause of dementia worldwide and remains incurable once it begins. Therefore, early and accurate diagnosis is essential for effective intervention. Leveraging recent advances in deep learning, this study proposes a novel diagnostic model based on the 3D-ResNet architecture to classify three cognitive states: AD, mild cognitive impairment (MCI), and cognitively normal (CN) individuals, using MRI data. The model integrates the strengths of ResNet and 3D convolutional neural networks (3D-CNN), and incorporates a special attention mechanism(SAM) within the residual structure to enhance feature representation. The study utilized the ADNI dataset, comprising 800 brain MRI scans. The dataset was split in a 7:3 ratio for training and testing, and the network was trained using data augmentation and cross-validation strategies. The proposed model achieved 92.33% accuracy in the three-class classification task, and 97.61%, 95.83%, and 93.42% accuracy in binary classifications of AD vs. CN, AD vs. MCI, and CN vs. MCI, respectively, outperforming existing state-of-the-art methods. Furthermore, Grad-CAM heatmaps and 3D MRI reconstructions revealed that the cerebral cortex and hippocampus are critical regions for AD classification. These findings demonstrate a robust and interpretable AI-based diagnostic framework for AD, providing valuable technical support for its timely detection and clinical intervention.

Use of Artificial Intelligence in Recognition of Fetal Open Neural Tube Defect on Prenatal Ultrasound.

Kumar M, Arora U, Sengupta D, Nain S, Meena D, Yadav R, Perez M

pubmed logopapersMay 12 2025
To compare the axial cranial ultrasound images of normal and open neural tube defect (NTD) fetuses using a deep learning (DL) model and to assess its predictive accuracy in identifying open NTD.It was a prospective case-control study. Axial trans-thalamic fetal ultrasound images of participants with open fetal NTD and normal controls between 14 and 28 weeks of gestation were taken after consent. The images were divided into training, testing, and validation datasets randomly in the ratio of 70:15:15. The images were further processed and classified using DL convolutional neural network (CNN) transfer learning (TL) models. The TL models were trained for 50 epochs. The data was analyzed in terms of Cohen kappa score, accuracy score, area under receiver operating curve (AUROC) score, F1 score validity, sensitivity, and specificity of the test.A total of 59 cases and 116 controls were fully followed. Efficient net B0, Visual Geometry Group (VGG), and Inception V3 TL models were used. Both Efficient net B0 and VGG16 models gave similar high training and validation accuracy (100 and 95.83%, respectively). Using inception V3, the training and validation accuracy was 98.28 and 95.83%, respectively. The sensitivity and specificity of Efficient NetB0 was 100 and 89%, respectively, and was the best.The analysis of the changes in axial images of the fetal cranium using the DL model, Efficient Net B0 proved to be an effective model to be used in clinical application for the identification of open NTD. · Open spina bifida is often missed due to the nonrecognition of the lemon sign on ultrasound.. · Image classification using DL identified open spina bifida with excellent accuracy.. · The research is clinically relevant in low- and middle-income countries..

Automated field-in-field planning for tangential breast radiation therapy based on digitally reconstructed radiograph.

Srikornkan P, Khamfongkhruea C, Intanin P, Thongsawad S

pubmed logopapersMay 12 2025
The tangential field-in-field (FIF) technique is a widely used method in breast radiation therapy, known for its efficiency and the reduced number of fields required in treatment planning. However, it is labor-intensive, requiring manual shaping of the multileaf collimator (MLC) to minimize hot spots. This study aims to develop a novel automated FIF planning approach for tangential breast radiation therapy using Digitally Reconstructed Radiograph (DRR) images. A total of 78 patients were selected to train and test a fluence map prediction model based on U-Net architecture. DRR images were used as input data to predict the fluence maps. The predicted fluence maps for each treatment plan were then converted into MLC positions and exported as Digital Imaging and Communications in Medicine (DICOM) files. These files were used to recalculate the dose distribution and assess dosimetric parameters for both the PTV and OARs. The mean absolute error (MAE) between the predicted and original fluence map was 0.007 ± 0.002. The result of gamma analysis indicates strong agreement between the predicted and original fluence maps, with gamma passing rate values of 95.47 ± 4.27 for the 3 %/3 mm criteria, 94.65 ± 4.32 for the 3 %/2 mm criteria, and 83.4 ± 12.14 for the 2 %/2 mm criteria. The plan quality, in terms of tumor coverage and doses to organs at risk (OARs), showed no significant differences between the automated FIF and original plans. The automated plans yielded promising results, with plan quality comparable to the original.

Accelerating prostate rs-EPI DWI with deep learning: Halving scan time, enhancing image quality, and validating in vivo.

Zhang P, Feng Z, Chen S, Zhu J, Fan C, Xia L, Min X

pubmed logopapersMay 12 2025
This study aims to evaluate the feasibility and effectiveness of deep learning-based super-resolution techniques to reduce scan time while preserving image quality in high-resolution prostate diffusion-weighted imaging (DWI) with readout-segmented echo-planar imaging (rs-EPI). We retrospectively and prospectively analyzed prostate rs-EPI DWI data, employing deep learning super-resolution models, particularly the Multi-Scale Self-Similarity Network (MSSNet), to reconstruct low-resolution images into high-resolution images. Performance metrics such as structural similarity index (SSIM), Peak signal-to-noise ratio (PSNR), and normalized root mean squared error (NRMSE) were used to compare reconstructed images against the high-resolution ground truth (HR<sub>GT</sub>). Additionally, we evaluated the apparent diffusion coefficient (ADC) values and signal-to-noise ratio (SNR) across different models. The MSSNet model demonstrated superior performance in image reconstruction, achieving maximum SSIM values of 0.9798, and significant improvements in PSNR and NRMSE compared to other models. The deep learning approach reduced the rs-EPI DWI scan time by 54.4 % while maintaining image quality comparable to HR<sub>GT</sub>. Pearson correlation analysis revealed a strong correlation between ADC values from deep learning-reconstructed images and the ground truth, with differences remaining within 5 %. Furthermore, all models showed significant SNR enhancement, with MSSNet performing best across most cases. Deep learning-based super-resolution techniques, particularly MSSNet, effectively reduce scan time and enhance image quality in prostate rs-EPI DWI, making them promising tools for clinical applications.

Promptable segmentation of CT lung lesions based on improved U-Net and Segment Anything model (SAM).

Yan W, Xu Y, Yan S

pubmed logopapersMay 11 2025
BackgroundComputed tomography (CT) is widely used in clinical diagnosis of lung diseases. The automatic segmentation of lesions in CT images aids in the development of intelligent lung disease diagnosis.ObjectiveThis study aims to address the issue of imprecise segmentation in CT images due to the blurred detailed features of lesions, which can easily be confused with surrounding tissues.MethodsWe proposed a promptable segmentation method based on an improved U-Net and Segment Anything model (SAM) to improve segmentation accuracy of lung lesions in CT images. The improved U-Net incorporates a multi-scale attention module based on a channel attention mechanism ECA (Efficient Channel Attention) to improve recognition of detailed feature information at edge of lesions; and a promptable clipping module to incorporate physicians' prior knowledge into the model to reduce background interference. Segment Anything model (SAM) has a strong ability to recognize lesions and pulmonary atelectasis or organs. We combine the two to improve overall segmentation performances.ResultsOn the LUAN16 dataset and a lung CT dataset provided by the Shanghai Chest Hospital, the proposed method achieves Dice coefficients of 80.12% and 92.06%, and Positive Predictive Values of 81.25% and 91.91%, which are superior to most existing mainstream segmentation methods.ConclusionThe proposed method can be used to improve segmentation accuracy of lung lesions in CT images, enhance automation level of existing computer-aided diagnostic systems, and provide more effective assistance to radiologists in clinical practice.

Learning-based multi-material CBCT image reconstruction with ultra-slow kV switching.

Ma C, Zhu J, Zhang X, Cui H, Tan Y, Guo J, Zheng H, Liang D, Su T, Sun Y, Ge Y

pubmed logopapersMay 11 2025
ObjectiveThe purpose of this study is to perform multiple (<math xmlns="http://www.w3.org/1998/Math/MathML"><mo>≥</mo><mn>3</mn></math>) material decomposition with deep learning method for spectral cone-beam CT (CBCT) imaging based on ultra-slow kV switching.ApproachIn this work, a novel deep neural network called SkV-Net is developed to reconstruct multiple material density images from the ultra-sparse spectral CBCT projections acquired using the ultra-slow kV switching technique. In particular, the SkV-Net has a backbone structure of U-Net, and a multi-head axial attention module is adopted to enlarge the perceptual field. It takes the CT images reconstructed from each kV as input, and output the basis material images automatically based on their energy-dependent attenuation characteristics. Numerical simulations and experimental studies are carried out to evaluate the performance of this new approach.Main ResultsIt is demonstrated that the SkV-Net is able to generate four different material density images, i.e., fat, muscle, bone and iodine, from five spans of kV switched spectral projections. Physical experiments show that the decomposition errors of iodine and CaCl<math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow></mrow><mn>2</mn></msub></math> are less than 6<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>%</mi></math>, indicating high precision of this novel approach in distinguishing materials.SignificanceSkV-Net provides a promising multi-material decomposition approach for spectral CBCT imaging systems implemented with the ultra-slow kV switching scheme.

Altered intrinsic ignition dynamics linked to Amyloid-β and tau pathology in Alzheimer's disease

Patow, G. A., Escrichs, A., Martinez-Molina, N., Ritter, P., Deco, G.

biorxiv logopreprintMay 11 2025
Alzheimer's disease (AD) progressively alters brain structure and function, yet the associated changes in large-scale brain network dynamics remain poorly understood. We applied the intrinsic ignition framework to resting-state functional MRI (rs-fMRI) data from AD patients, individuals with mild cognitive impairment (MCI), and cognitively healthy controls (HC) to elucidate how AD shapes intrinsic brain activity. We assessed node-metastability at the whole-brain level and in 7 canonical resting-state networks (RSNs). Our results revealed a progressive decline in dynamical complexity across the disease continuum. HC exhibited the highest node-metastability, whereas it was substantially reduced in MCI and AD patients. The cortical hierarchy of information processing was also disrupted, indicating that rich-club hubs may be selectively affected in AD progression. Furthermore, we used linear mixed-effects models to evaluate the influence of Amyloid-{beta} (A{beta}) and tau pathology on brain dynamics at both regional and whole-brain levels. We found significant associations between both protein burdens and alterations in node metastability. Lastly, a machine learning classifier trained on brain dynamics, A{beta}, and tau burden features achieved high accuracy in discriminating between disease stages. Together, our findings highlight the progressive disruption of intrinsic ignition across whole-brain and RSNs in AD and support the use of node-metastability in conjunction with proteinopathy as a novel framework for tracking disease progression.

Study on predicting breast cancer Ki-67 expression using a combination of radiomics and deep learning based on multiparametric MRI.

Wang W, Wang Z, Wang L, Li J, Pang Z, Qu Y, Cui S

pubmed logopapersMay 11 2025
To develop a multiparametric breast MRI radiomics and deep learning-based multimodal model for predicting preoperative Ki-67 expression status in breast cancer, with the potential to advance individualized treatment and precision medicine for breast cancer patients. We included 176 invasive breast cancer patients who underwent breast MRI and had Ki-67 results. The dataset was randomly split into training (70 %) and test (30 %) sets. Features from T1-weighted imaging (T1WI), diffusion-weighted imaging (DWI), T2-weighted imaging (T2WI), and dynamic contrast-enhanced MRI (DCE-MRI) were fused. Separate models were created for each sequence: T1, DWI, T2, and DCE. A multiparametric MRI (mp-MRI) model was then developed by combining features from all sequences. Models were trained using five-fold cross-validation and evaluated on the test set with receiver operating characteristic (ROC) curve area under the curve (AUC), accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and F1 score. Delong's test compared the mp-MRI model with the other models, with P < 0.05 indicating statistical significance. All five models demonstrated good performance, with AUCs of 0.83 for the T1 model, 0.85 for the DWI model, 0.90 for the T2 model, 0.92 for the DCE model, and 0.96 for the mp-MRI model. Delong's test indicated statistically significant differences between the mp-MRI model and the other four models, with P values < 0.05. The multiparametric breast MRI radiomics and deep learning-based multimodal model performs well in predicting preoperative Ki-67 expression status in breast cancer.

A systematic review and meta-analysis of the utility of quantitative, imaging-based approaches to predict radiation-induced toxicity in lung cancer patients.

Tong D, Midroni J, Avison K, Alnassar S, Chen D, Parsa R, Yariv O, Liu Z, Ye XY, Hope A, Wong P, Raman S

pubmed logopapersMay 11 2025
To conduct a systematic review and meta-analysis of the performance of radiomics, dosiomics and machine learning in generating toxicity prediction in thoracic radiotherapy. An electronic database search was conducted and dual-screened by independent authors to identify eligible studies for systematic review and meta-analysis. Data was extracted and study quality was assessed using TRIPOD for machine learning studies, RQS for Radiomics and RoB for dosiomics. 10,703 studies were identified, and 5252 entered screening. 106 studies including 23,373 patients were eligible for systematic review. Primary toxicity predicted was radiation pneumonitis (81), followed by esophagitis (12) and lymphopenia (4). Fourty-two studies studying radiation pneumonitis were eligible for meta-analysis, with pooled area-under-curve (AUC) of 0.82 (95% CI 0.79-0.85). Studies with machine learning had the best performance, with classical and deep learning models having similar performance. There is a trend towards an improvement of the performance of models with the year of publication. There is variability in study quality among the three study categories and dosiomic studies scored the highest among these. Publication bias was not observed. The majority of existing literature using radiomics, dosiomics and machine learning has focused on radiation pneumonitis prediction. Future research should focus on toxicity prediction of other organs at risk and the adoption of these models into clinical practice.

Creation of an Open-Access Lung Ultrasound Image Database For Deep Learning and Neural Network Applications

Kumar, A., Nandakishore, P., Gordon, A. J., Baum, E., Madhok, J., Duanmu, Y., Kugler, J.

medrxiv logopreprintMay 11 2025
BackgroundLung ultrasound (LUS) offers advantages over traditional imaging for diagnosing pulmonary conditions, with superior accuracy compared to chest X-ray and similar performance to CT at lower cost. Despite these benefits, widespread adoption is limited by operator dependency, moderate interrater reliability, and training requirements. Deep learning (DL) could potentially address these challenges, but development of effective algorithms is hindered by the scarcity of comprehensive image repositories with proper metadata. MethodsWe created an open-source dataset of LUS images derived a multi-center study involving N=226 adult patients presenting with respiratory symptoms to emergency departments between March 2020 and April 2022. Images were acquired using a standardized scanning protocol (12-zone or modified 8-zone) with various point-of-care ultrasound devices. Three blinded researchers independently analyzed each image following consensus guidelines, with disagreements adjudicated to provide definitive interpretations. Videos were pre-processed to remove identifiers, and frames were extracted and resized to 128x128 pixels. ResultsThe dataset contains 1,874 video clips comprising 303,977 frames. Half of the participants (50%) had COVID-19 pneumonia. Among all clips, 66% contained no abnormalities, 18% contained B-lines, 4.5% contained consolidations, 6.4% contained both B-lines and consolidations, and 5.2% had indeterminate findings. Pathological findings varied significantly by lung zone, with anterior zones more frequently normal and less likely to show consolidations compared to lateral and posterior zones. DiscussionThis dataset represents one of the largest annotated LUS repositories to date, including both COVID-19 and non-COVID-19 patients. The comprehensive metadata and expert interpretations enhance its utility for DL applications. Despite limitations including potential device-specific characteristics and COVID-19 predominance, this repository provides a valuable resource for developing AI tools to improve LUS acquisition and interpretation.
Page 12 of 25248 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.