Sort by:
Page 12 of 15147 results

Deep Learning CAIPIRINHA-VIBE Improves and Accelerates Head and Neck MRI.

Nitschke LV, Lerchbaumer M, Ulas T, Deppe D, Nickel D, Geisel D, Kubicka F, Wagner M, Walter-Rittel T

pubmed logopapersMay 29 2025
The aim of this study was to evaluate image quality for contrast-enhanced (CE) neck MRI with a deep learning-reconstructed VIBE sequence with acceleration factors (AF) 4 (DL4-VIBE) and 6 (DL6-VIBE). Patients referred for neck MRI were examined in a 3-Tesla scanner in this prospective, single-center study. Four CE fat-saturated (FS) VIBE sequences were acquired in each patient: Star-VIBE (4:01 min), VIBE (2:05 min), DL4-VIBE (0:24 min), DL6-VIBE (0:17 min). Image quality was evaluated by three radiologists with a 5-point Likert scale and included overall image quality, muscle contour delineation, conspicuity of mucosa and pharyngeal musculature, FS uniformity, and motion artifacts. Objective image quality was assessed with signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and quantification of metal artifacts. 68 patients (60.3% male; mean age 57.4±16 years) were included in this study. DL4-VIBE was superior for overall image quality, delineation of muscle contours, differentiation of mucosa and pharyngeal musculature, vascular delineation, and motion artifacts. Notably, DL4-VIBE exhibited exceptional FS uniformity (p<0.001). SNR and CNR were superior for DL4-VIBE compared to all other sequences (p<0.001). Metal artifacts were least pronounced in the standard VIBE, followed by DL4-VIBE (p<0.001). Although DL6-VIBE was inferior to DL4-VIBE, it demonstrated improved FS homogeneity, delineation of pharyngeal mucosa, and CNR compared to Star-VIBE and VIBE. DL4-VIBE significantly improves image quality for CE neck MRI with a fraction of the scan time of conventional sequences.

Deep learning enables fast and accurate quantification of MRI-guided near-infrared spectral tomography for breast cancer diagnosis.

Feng J, Tang Y, Lin S, Jiang S, Xu J, Zhang W, Geng M, Dang Y, Wei C, Li Z, Sun Z, Jia K, Pogue BW, Paulsen KD

pubmed logopapersMay 29 2025
The utilization of magnetic resonance (MR) im-aging to guide near-infrared spectral tomography (NIRST) shows significant potential for improving the specificity and sensitivity of breast cancer diagnosis. However, the ef-ficiency and accuracy of NIRST image reconstruction have been limited by the complexities of light propagation mod-eling and MRI image segmentation. To address these chal-lenges, we developed and evaluated a deep learning-based approach for MR-guided 3D NIRST image reconstruction (DL-MRg-NIRST). Using a network trained on synthetic data, the DL-MRg-NIRST system reconstructed images from data acquired during 38 clinical imaging exams of pa-tients with breast abnormalities. Statistical analysis of the results demonstrated a sensitivity of 87.5%, a specificity of 92.9%, and a diagnostic accuracy of 89.5% in distinguishing pathologically defined benign from malignant lesions. Ad-ditionally, the combined use of MRI and DL-MRg-NIRST di-agnoses achieved an area under the receiver operating characteristic (ROC) curve of 0.98. Remarkably, the DL-MRg-NIRST image reconstruction process required only 1.4 seconds, significantly faster than state-of-the-art MR-guided NIRST methods.

Incorporating organ deformation in biological modeling and patient outcome study for permanent prostate brachytherapy.

To S, Mavroidis P, Chen RC, Wang A, Royce T, Tan X, Zhu T, Lian J

pubmed logopapersMay 28 2025
Permanent prostate brachytherapy has inherent intraoperative organ deformation due to the inflatable trans-rectal ultrasound probe cover. Since the majority of the dose is delivered postoperatively with no deformation, the dosimetry approved at the time of implant may not accurately represent the dose delivered to the target and organs at risk. We aimed to evaluate the biological effect of the prostate deformation and its correlation with patient-reported outcomes. We prospectively acquired ultrasound images of the prostate pre- and postprobe cover inflation for 27 patients undergoing I-125 seed implant. The coordinates of implanted seeds from approved clinical plan were transferred to deformation-corrected prostate to simulate the actual dosimetry using a machine learning-based deformable image registration. The DVHs of both sets of plans were reduced to biologically effective dose (BED) distribution and subsequently to Tumor Control Probability (TCP) and Normal Tissue Complication Probability (NTCP) metrics. The change in fourteen patient-reported rectal and urinary symptoms between pretreatment to 6 months post-op time points were correlated with the TCP and NTCP metrics using the area under the curve (AUC) and odds ratio (OR). Between the clinical and the deformation corrected research plans, the mean TCP decreased by 9.4% (p < 0.01), whereas mean NTCP of rectum decreased by 10.3% and that of urethra increased by 16.3%, respectively (p < 0.01). For the diarrhea symptom, the deformation corrected research plans showed AUC=0.75 and OR = 8.9 (1.3-58.8) for the threshold NTCP>20%, while the clinical plan showed AUC=0.56 and OR = 1.4 (0.2 to 9.0). For the symptom of urinary control, the deformation corrected research plans showed AUC = 0.70, OR = 6.9 (0.6 to 78.0) for the threshold of NTCP>15%, while the clinical plan showed AUC = 0.51 and no positive OR. Taking organ deformation into consideration, clinical brachytherapy plans showed worse tumor coverage, worse urethra sparing but better rectal sparing. The deformation corrected research plans showed a stronger correlation with the patient-reported outcome than the clinical plans for the symptoms of diarrhea and urinary control.

China Protocol for early screening, precise diagnosis, and individualized treatment of lung cancer.

Wang C, Chen B, Liang S, Shao J, Li J, Yang L, Ren P, Wang Z, Luo W, Zhang L, Liu D, Li W

pubmed logopapersMay 27 2025
Early screening, diagnosis, and treatment of lung cancer are pivotal in clinical practice since the tumor stage remains the most dominant factor that affects patient survival. Previous initiatives have tried to develop new tools for decision-making of lung cancer. In this study, we proposed the China Protocol, a complete workflow of lung cancer tailored to the Chinese population, which is implemented by steps including early screening by evaluation of risk factors and three-dimensional thin-layer image reconstruction technique for low-dose computed tomography (Tre-LDCT), accurate diagnosis via artificial intelligence (AI) and novel biomarkers, and individualized treatment through non-invasive molecule visualization strategies. The application of this protocol has improved the early diagnosis and 5-year survival rates of lung cancer in China. The proportion of early-stage (stage I) lung cancer has increased from 46.3% to 65.6%, along with a 5-year survival rate of 90.4%. Moreover, especially for stage IA1 lung cancer, the diagnosis rate has improved from 16% to 27.9%; meanwhile, the 5-year survival rate of this group achieved 97.5%. Thus, here we defined stage IA1 lung cancer, which cohort benefits significantly from early diagnosis and treatment, as the "ultra-early stage lung cancer", aiming to provide an intuitive description for more precise management and survival improvement. In the future, we will promote our findings to multicenter remote areas through medical alliances and mobile health services with the desire to move forward the diagnosis and treatment of lung cancer.

Multicentre evaluation of deep learning CT autosegmentation of the head and neck region for radiotherapy.

Pang EPP, Tan HQ, Wang F, Niemelä J, Bolard G, Ramadan S, Kiljunen T, Capala M, Petit S, Seppälä J, Vuolukka K, Kiitam I, Zolotuhhin D, Gershkevitsh E, Lehtiö K, Nikkinen J, Keyriläinen J, Mokka M, Chua MLK

pubmed logopapersMay 27 2025
This is a multi-institutional study to evaluate a head-and-neck CT auto-segmentation software across seven institutions globally. 11 lymph node levels and 7 organs-at-risk contours were evaluated in a two-phase study design. Time savings were measured in both phases, and the inter-observer variability across the seven institutions was quantified in phase two. Overall time savings were found to be 42% in phase one and 49% in phase two. Lymph node levels IA, IB, III, IVA, and IVB showed no significant time savings, with some centers reporting longer editing times than manual delineation. All the edited ROIs showed reduced inter-observer variability compared to manual segmentation. Our study shows that auto-segmentation plays a crucial role in harmonizing contouring practices globally. However, the clinical benefits of auto-segmentation software vary significantly across ROIs and between clinics. To maximize its potential, institution-specific commissioning is required to optimize the clinical benefits.

Research-based clinical deployment of artificial intelligence algorithm for prostate MRI.

Harmon SA, Tetreault J, Esengur OT, Qin M, Yilmaz EC, Chang V, Yang D, Xu Z, Cohen G, Plum J, Sherif T, Levin R, Schmidt-Richberg A, Thompson S, Coons S, Chen T, Choyke PL, Xu D, Gurram S, Wood BJ, Pinto PA, Turkbey B

pubmed logopapersMay 26 2025
A critical limitation to deployment and utilization of Artificial Intelligence (AI) algorithms in radiology practice is the actual integration of algorithms directly into the clinical Picture Archiving and Communications Systems (PACS). Here, we sought to integrate an AI-based pipeline for prostate organ and intraprostatic lesion segmentation within a clinical PACS environment to enable point-of-care utilization under a prospective clinical trial scenario. A previously trained, publicly available AI model for segmentation of intra-prostatic findings on multiparametric Magnetic Resonance Imaging (mpMRI) was converted into a containerized environment compatible with MONAI Deploy Express. An inference server and dedicated clinical PACS workflow were established within our institution for evaluation of real-time use of the AI algorithm. PACS-based deployment was prospectively evaluated in two phases: first, a consecutive cohort of patients undergoing diagnostic imaging at our institution and second, a consecutive cohort of patients undergoing biopsy based on mpMRI findings. The AI pipeline was executed from within the PACS environment by the radiologist. AI findings were imported into clinical biopsy planning software for target definition. Metrics analyzing deployment success, timing, and detection performance were recorded and summarized. In phase one, clinical PACS deployment was successfully executed in 57/58 cases and were obtained within one minute of activation (median 33 s [range 21-50 s]). Comparison with expert radiologist annotation demonstrated stable model performance compared to independent validation studies. In phase 2, 40/40 cases were successfully executed via PACS deployment and results were imported for biopsy targeting. Cancer detection rates for prostate cancer were 82.1% for ROI targets detected by both AI and radiologist, 47.8% in targets proposed by AI and accepted by radiologist, and 33.3% in targets identified by the radiologist alone. Integration of novel AI algorithms requiring multi-parametric input into clinical PACS environment is feasible and model outputs can be used for downstream clinical tasks.

Radiomics based on dual-energy CT for noninvasive prediction of cervical lymph node metastases in patients with nasopharyngeal carcinoma.

Li L, Yang D, Wu Y, Sun R, Qin Y, Kang M, Deng X, Bu M, Li Z, Zeng Z, Zeng X, Jiang M, Chen BT

pubmed logopapersMay 26 2025
To develop and validate a machine learning model based on dual-energy computed tomography (DECT) for predicting cervical lymph node metastases (CLNM) in patients diagnosed with nasopharyngeal carcinoma (NPC). This prospective single-center study enrolled patients with NPC and the study assessment included both DECT and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT). Radiomics features were extracted from each region of interest (ROI) for cervical lymph nodes using arterial and venous phase images at 100 keV and 150 keV, either individually as non-fusion models or combined as fusion models on the DECT images. The performance of the random forest (RF) models, combined with radiomics features, was evaluated by area under the receiver operating characteristic curve (AUC) analysis. DeLong's test was employed to compare model performances, while decision curve analysis (DCA) assessed the clinical utility of the predictive models. Sixty-six patients with NPC were included for analysis, which was divided into a training set (n = 42) and a validation set (n = 22). A total of 13 radiomic models were constructed (4 non-fusion models and 9 fusion models). In the non-fusion models, when the threshold value exceeded 0.4, the venous phase at 100 keV (V100) (AUC, 0.9667; 95 % confidence interval [95 % CI], 0.9363-0.9901) model exhibited a higher net benefit than other non-fusion models. The V100 + V150 fusion model achieved the best performance, with an AUC of 0.9697 (95 % CI, 0.9393-0.9907). DECT-based radiomics effectively diagnosed CLNM in patients with NPC and may potentially be a valuable tool for clinical decision-making. This study improved pre-operative evaluation, treatment strategy selection, and prognostic evaluation for patients with nasopharyngeal carcinoma by combining DECT and radiomics to predict cervical lymph node status prior to treatment.

Evaluation of locoregional invasiveness of early lung adenocarcinoma manifesting as ground-glass nodules via [<sup>68</sup>Ga]Ga-FAPI-46 PET/CT imaging.

Ruan D, Shi S, Guo W, Pang Y, Yu L, Cai J, Wu Z, Wu H, Sun L, Zhao L, Chen H

pubmed logopapersMay 24 2025
Accurate differentiation of the histologic invasiveness of early-stage lung adenocarcinoma is crucial for determining surgical strategies. This study aimed to investigate the potential of [<sup>68</sup>Ga]Ga-FAPI-46 PET/CT in assessing the invasiveness of early lung adenocarcinoma presenting as ground-glass nodules (GGNs) and identifying imaging features with strong predictive potential. This prospective study (NCT04588064) was conducted between July 2020 and July 2022, focusing on GGNs that were confirmed postoperatively to be either invasive adenocarcinoma (IAC), minimally invasive adenocarcinoma (MIA), or precursor glandular lesions (PGL). A total of 45 patients with 53 pulmonary GGNs were included in the study: 19 patients with GGNs associated with PGL-MIA and 34 with IAC. Lung nodules were segmented using the Segment Anything Model in Medical Images (MedSAM) and the PET Tumor Segmentation Extension. Clinical characteristics, along with conventional and high-throughput radiomics features from High-resolution CT (HRCT) and PET scans, were analysed. The predictive performance of these features in differentiating between PGL or MIA (PGL-MIA) and IAC was assessed using 5-fold cross-validation across six machine learning algorithms. Model validation was performed on an independent external test set (n = 11). The Chi-squared, Fisher's exact, and DeLong tests were employed to compare the performance of the models. The maximum standardised uptake value (SUVmax) derived from [<sup>68</sup>Ga]Ga-FAPI-46 PET was identified as an independent predictor of IAC. A cut-off value of 1.82 yielded a sensitivity of 94% (32/34), specificity of 84% (16/19), and an overall accuracy of 91% (48/53) in the training set, while achieving 100% (12/12) accuracy in the external test set. Radiomics-based classification further improved diagnostic performance, achieving a sensitivity of 97% (33/34), specificity of 89% (17/19), accuracy of 94% (50/53), and an area under the receiver operating characteristic curve (AUC) of 0.97 [95% CI: 0.93-1.00]. Compared with the CT-based radiomics model and the PET-based model, the combined PET/CT radiomics model did not show significant improvement in predictive performance. The key predictive feature was [<sup>68</sup>Ga]Ga-FAPI-46 PET log-sigma-7-mm-3D_firstorder_RootMeanSquared. The SUVmax derived from [<sup>68</sup>Ga]Ga-FAPI-46 PET/CT can effectively differentiate the invasiveness of early-stage lung adenocarcinoma manifesting as GGNs. Integrating high-throughput features from [<sup>68</sup>Ga]Ga-FAPI-46 PET/CT images can considerably enhance classification accuracy. NCT04588064; URL: https://clinicaltrials.gov/study/NCT04588064 .

Deep learning reconstruction combined with contrast-enhancement boost in dual-low dose CT pulmonary angiography: a two-center prospective trial.

Shen L, Lu J, Zhou C, Bi Z, Ye X, Zhao Z, Xu M, Zeng M, Wang M

pubmed logopapersMay 24 2025
To investigate whether the deep learning reconstruction (DLR) combined with contrast-enhancement-boost (CE-boost) technique can improve the diagnostic quality of CT pulmonary angiography (CTPA) at low radiation and contrast doses, compared with routine CTPA using hybrid iterative reconstruction (HIR). This prospective two-center study included 130 patients who underwent CTPA for suspected pulmonary embolism. Patients were randomly divided into two groups: the routine CTPA group, reconstructed using HIR; and the dual-low dose CTPA group, reconstructed using HIR and DLR, additionally combined with the CE-boost to generate HIR-boost and DLR-boost images. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of pulmonary arteries were quantitatively assessed. Two experienced radiologists independently ordered CT images (5, best; 1, worst) based on overall image noise and vascular contrast. Diagnostic performance for PE detection was calculated for each dataset. Patient demographics were similar between groups. Compared to HIR images of the routine group, DLR-boost images of the dual-low dose group were significantly better at qualitative scores (p < 0.001). The CT values of pulmonary arteries between the DLR-boost and the HIR images were comparable (p > 0.05), whereas the SNRs and CNRs of pulmonary arteries in the DLR-boost images were the highest among all five datasets (p < 0.001). The AUCs of DLR, HIR-boost, and DLR-boost were 0.933, 0.924, and 0.986, respectively (all p > 0.05). DLR combined with CE-boost technique can significantly improve the image quality of CTPA with reduced radiation and contrast doses, facilitating a more accurate diagnosis of pulmonary embolism. Question The dual-low dose protocol is essential for detecting pulmonary emboli (PE) in follow-up CT pulmonary angiography (PA), yet effective solutions are still lacking. Findings Deep learning reconstruction (DLR)-boost with reduced radiation and contrast doses demonstrated higher quantitative and qualitative image quality than hybrid-iterative reconstruction in the routine CTPA. Clinical relevance DLR-boost based low-radiation and low-contrast-dose CTPA protocol offers a novel strategy to further enhance the image quality and diagnosis accuracy for pulmonary embolism patients.

Quantitative image quality metrics enable resource-efficient quality control of clinically applied AI-based reconstructions in MRI.

White OA, Shur J, Castagnoli F, Charles-Edwards G, Whitcher B, Collins DJ, Cashmore MTD, Hall MG, Thomas SA, Thompson A, Harrison CA, Hopkinson G, Koh DM, Winfield JM

pubmed logopapersMay 24 2025
AI-based MRI reconstruction techniques improve efficiency by reducing acquisition times whilst maintaining or improving image quality. Recent recommendations from professional bodies suggest centres should perform quality assessments on AI tools. However, monitoring long-term performance presents challenges, due to model drift or system updates. Radiologist-based assessments are resource-intensive and may be subjective, highlighting the need for efficient quality control (QC) measures. This study explores using image quality metrics (IQMs) to assess AI-based reconstructions. 58 patients undergoing standard-of-care rectal MRI were imaged using AI-based and conventional T2-weighted sequences. Paired and unpaired IQMs were calculated. Sensitivity of IQMs to detect retrospective perturbations in AI-based reconstructions was assessed using control charts, and statistical comparisons between the four MR systems in the evaluation were performed. Two radiologists evaluated the image quality of the perturbed images, giving an indication of their clinical relevance. Paired IQMs demonstrated sensitivity to changes in AI-reconstruction settings, identifying deviations outside ± 2 standard deviations of the reference dataset. Unpaired metrics showed less sensitivity. Paired IQMs showed no difference in performance between 1.5 T and 3 T systems (p > 0.99), whilst minor but significant (p < 0.0379) differences were noted for unpaired IQMs. IQMs are effective for QC of AI-based MR reconstructions, offering resource-efficient alternatives to repeated radiologist evaluations. Future work should expand this to other imaging applications and assess additional measures.
Page 12 of 15147 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.