Sort by:
Page 12 of 38375 results

LWT-ARTERY-LABEL: A Lightweight Framework for Automated Coronary Artery Identification

Shisheng Zhang, Ramtin Gharleghi, Sonit Singh, Daniel Moses, Dona Adikari, Arcot Sowmya, Susann Beier

arxiv logopreprintAug 9 2025
Coronary artery disease (CAD) remains the leading cause of death globally, with computed tomography coronary angiography (CTCA) serving as a key diagnostic tool. However, coronary arterial analysis using CTCA, such as identifying artery-specific features from computational modelling, is labour-intensive and time-consuming. Automated anatomical labelling of coronary arteries offers a potential solution, yet the inherent anatomical variability of coronary trees presents a significant challenge. Traditional knowledge-based labelling methods fall short in leveraging data-driven insights, while recent deep-learning approaches often demand substantial computational resources and overlook critical clinical knowledge. To address these limitations, we propose a lightweight method that integrates anatomical knowledge with rule-based topology constraints for effective coronary artery labelling. Our approach achieves state-of-the-art performance on benchmark datasets, providing a promising alternative for automated coronary artery labelling.

Stenosis degree and plaque burden differ between the major epicardial coronary arteries supplying ischemic territories.

Kero T, Knuuti J, Bär S, Bax JJ, Saraste A, Maaniitty T

pubmed logopapersAug 9 2025
It is unclear whether coronary artery stenosis, plaque burden, and composition differ between major epicardial arteries supplying ischemic myocardial territories. We studied 837 symptomatic patients undergoing coronary computed tomography angiography (CTA) and <sup>15</sup>O-water PET myocardial perfusion imaging for suspected obstructive coronary artery disease. Coronary CTA was analyzed using Artificial Intelligence-Guided Quantitative Computed Tomography (AI-QCT) to assess stenosis and atherosclerotic plaque characteristics. Myocardial ischemia was defined by regional PET perfusion in the left anterior descending (LAD), left circumflex (LCX), and right coronary artery (RCA) territories. Among arteries supplying ischemic territories, the LAD exhibited significantly higher stenosis and both absolute and normalized plaque volumes compared to LCX and RCA (p<0.001 for all). Multivariable logistic regression showed diameter stenosis (p=0.001-0.015), percent atheroma volume (PAV; p<0.001), and percent non-calcified plaque volume (p=0.001-0.017) were associated with ischemia across all three arteries. Percent calcified plaque volume was associated with ischemia only in the RCA (p=0.001). The degree of stenosis and atherosclerotic burden are significantly higher in LAD as compared to LCX and RCA, both in epicardial coronary arteries supplying non-ischemic or ischemic myocardial territories. In all the three main coronary arteries both luminal narrowing and plaque burden are independent predictors of ischemia, where the plaque burden is mainly driven by non-calcified plaque. However, many vessels supplying ischemic territories have relatively low stenosis degree and plaque burden, especially in the LCx and RCA, limiting the ability of diameter stenosis and PAV to predict myocardial ischemia.

Automated coronary artery segmentation / tissue characterization and detection of lipid-rich plaque: An integrated backscatter intravascular ultrasound study.

Masuda Y, Takeshita R, Tsujimoto A, Sahashi Y, Watanabe T, Fukuoka D, Hara T, Kanamori H, Okura H

pubmed logopapersAug 8 2025
Intravascular ultrasound (IVUS)-based tissue characterization has been used to detect vulnerable plaque or lipid-rich plaque (LRP). Recently, advancements in artificial intelligence (AI) technology have enabled automated coronary arterial plaque segmentation and tissue characterization. The purpose of this study was to evaluate the feasibility and diagnostic accuracy of a deep learning model for plaque segmentation, tissue characterization and identification of LRP. A total of 1,098 IVUS images from 67 patients who underwent IVUS-guided percutaneous coronary intervention were selected for the training group, while 1,100 IVUS images from 100 vessels (88 patients) were used for the validation group. A 7-layer U-Net ++ was applied for automated coronary artery segmentation and tissue characterization. Segmentation and quantification of the external elastic membrane (EEM), lumen and guidewire artifact were performed and compared with manual measurements. Plaque tissue characterization was conducted using integrated backscatter (IB)-IVUS as the gold standard. LRP was defined as %lipid area of ≥65 %. The deep learning model accurately segmented EEM and lumen. AI-predicted %lipid area (R = 0.90, P < 0.001), % fibrosis area (R = 0.89, P < 0.001), %dense fibrosis area (R = 0.81, P < 0.001) and % calcification area (R = 0.89, P < 0.001), showed strong correlation with IB-IVUS measurements. The model predicted LRP with a sensitivity of 62 %, specificity of 94 %, positive predictive value of 69 %, negative predictive value of 92 % and an area under the receiver operating characteristic curve of 0.919 (95 % CI:0.902-0.934), respectively. The deep-learning model demonstrated accurate automatic segmentation and tissue characterization of human coronary arteries, showing promise for identifying LRP.

Can Diffusion Models Bridge the Domain Gap in Cardiac MR Imaging?

Xin Ci Wong, Duygu Sarikaya, Kieran Zucker, Marc De Kamps, Nishant Ravikumar

arxiv logopreprintAug 8 2025
Magnetic resonance (MR) imaging, including cardiac MR, is prone to domain shift due to variations in imaging devices and acquisition protocols. This challenge limits the deployment of trained AI models in real-world scenarios, where performance degrades on unseen domains. Traditional solutions involve increasing the size of the dataset through ad-hoc image augmentation or additional online training/transfer learning, which have several limitations. Synthetic data offers a promising alternative, but anatomical/structural consistency constraints limit the effectiveness of generative models in creating image-label pairs. To address this, we propose a diffusion model (DM) trained on a source domain that generates synthetic cardiac MR images that resemble a given reference. The synthetic data maintains spatial and structural fidelity, ensuring similarity to the source domain and compatibility with the segmentation mask. We assess the utility of our generative approach in multi-centre cardiac MR segmentation, using the 2D nnU-Net, 3D nnU-Net and vanilla U-Net segmentation networks. We explore domain generalisation, where, domain-invariant segmentation models are trained on synthetic source domain data, and domain adaptation, where, we shift target domain data towards the source domain using the DM. Both strategies significantly improved segmentation performance on data from an unseen target domain, in terms of surface-based metrics (Welch's t-test, p < 0.01), compared to training segmentation models on real data alone. The proposed method ameliorates the need for transfer learning or online training to address domain shift challenges in cardiac MR image analysis, especially useful in data-scarce settings.

Beyond Pixels: Medical Image Quality Assessment with Implicit Neural Representations

Caner Özer, Patryk Rygiel, Bram de Wilde, İlkay Öksüz, Jelmer M. Wolterink

arxiv logopreprintAug 7 2025
Artifacts pose a significant challenge in medical imaging, impacting diagnostic accuracy and downstream analysis. While image-based approaches for detecting artifacts can be effective, they often rely on preprocessing methods that can lead to information loss and high-memory-demand medical images, thereby limiting the scalability of classification models. In this work, we propose the use of implicit neural representations (INRs) for image quality assessment. INRs provide a compact and continuous representation of medical images, naturally handling variations in resolution and image size while reducing memory overhead. We develop deep weight space networks, graph neural networks, and relational attention transformers that operate on INRs to achieve image quality assessment. Our method is evaluated on the ACDC dataset with synthetically generated artifact patterns, demonstrating its effectiveness in assessing image quality while achieving similar performance with fewer parameters.

Artificial Intelligence for the Detection of Fetal Ultrasound Findings Concerning for Major Congenital Heart Defects.

Zelop CM, Lam-Rachlin J, Arunamata A, Punn R, Behera SK, Lachaud M, David N, DeVore GR, Rebarber A, Fox NS, Gayanilo M, Garmel S, Boukobza P, Uzan P, Joly H, Girardot R, Cohen L, Stos B, De Boisredon M, Askinazi E, Thorey V, Gardella C, Levy M, Geiger M

pubmed logopapersAug 7 2025
To evaluate the performance of an artificial intelligence (AI)-based software to identify second-trimester fetal ultrasound examinations suspicious for congenital heart defects. The software analyzes all grayscale two-dimensional ultrasound cine clips of an examination to evaluate eight morphologic findings associated with severe congenital heart defects. A data set of 877 examinations was retrospectively collected from 11 centers. The presence of suspicious findings was determined by a panel of expert pediatric cardiologists, who determined that 311 examinations had at least one of the eight suspicious findings. The AI software processed each examination, labeling each finding as present, absent, or inconclusive. Of the 280 examinations with known severe congenital heart defects, 278 (sensitivity 0.993, 95% CI, 0.974-0.998) had at least one of the eight suspicious findings present as determined by the fetal cardiologists, highlighting the relevance of these eight findings. We then evaluated the performance of the AI software, which identified at least one finding as present in 271 examinations, that all eight findings were absent in five examinations, and was inconclusive in four of the 280 examinations with severe congenital heart defects, yielding a sensitivity of 0.968 (95% CI, 0.940-0.983) for severe congenital heart defects. When comparing the AI to the determination of findings by fetal cardiologists, the detection of any finding by the AI had a sensitivity of 0.987 (95% CI, 0.967-0.995) and a specificity of 0.977 (95% CI, 0.961-0.986) after exclusion of inconclusive examinations. The AI rendered a decision for any finding (either present or absent) in 98.7% of examinations. The AI-based software demonstrated high accuracy in identification of suspicious findings associated with severe congenital heart defects, yielding a high sensitivity for detecting severe congenital heart defects. These results show that AI has potential to improve antenatal congenital heart defect detection.

Artificial Intelligence and Extended Reality in TAVR: Current Applications and Challenges.

Skalidis I, Sayah N, Benamer H, Amabile N, Laforgia P, Champagne S, Hovasse T, Garot J, Garot P, Akodad M

pubmed logopapersAug 6 2025
Integration of AI and XR in TAVR is revolutionizing the management of severe aortic stenosis by enhancing diagnostic accuracy, risk stratification, and pre-procedural planning. Advanced algorithms now facilitate precise electrocardiographic, echocardiographic, and CT-based assessments that reduce observer variability and enable patient-specific risk prediction. Immersive XR technologies, including augmented, virtual, and mixed reality, improve spatial visualization of complex cardiac anatomy and support real-time procedural guidance. Despite these advancements, standardized protocols, regulatory frameworks, and ethical safeguards remain necessary for widespread clinical adoption.

Artificial Intelligence Iterative Reconstruction Algorithm Combined with Low-Dose Aortic CTA for Preoperative Access Assessment of Transcatheter Aortic Valve Implantation: A Prospective Cohort Study.

Li Q, Liu D, Li K, Li J, Zhou Y

pubmed logopapersAug 6 2025
This study aimed to explore whether an artificial intelligence iterative reconstruction (AIIR) algorithm combined with low-dose aortic computed tomography angiography (CTA) demonstrates clinical effectiveness in assessing preoperative access for transcatheter aortic valve implantation (TAVI). A total of 109 patients were prospectively recruited for aortic CTA scans and divided into two groups: group A (n = 51) with standard-dose CT examinations (SDCT) and group B (n = 58) with low-dose CT examinations (LDCT). Group B was further subdivided into groups B1 and B2. Groups A and B2 used the hybrid iterative algorithm (HIR: Karl 3D), whereas Group B1 used the AIIR algorithm. CT attenuation and noise of different vessel segments were measured, and the contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were calculated. Two radiologists, who were blinded to the study details, rated the subjective image quality on a 5-point scale. The effective radiation doses were also recorded for groups A and B. Group B1 demonstrated the highest CT attenuation, SNR, and CNR and the lowest image noise among the three groups (p < 0.05). The scores of subjective image noise, vessel and non-calcified plaque edge sharpness, and overall image quality in Group B1 were higher than those in groups A and B2 (p < 0.001). Group B2 had the highest artifacts scores compared with groups A and B1 (p < 0.05). The radiation dose in group B was reduced by 50.33% compared with that in group A (p < 0.001). The AIIR algorithm combined with low-dose CTA yielded better diagnostic images before TAVI than the Karl 3D algorithm.

AI-Guided Cardiac Computer Tomography in Type 1 Diabetes Patients with Low Coronary Artery Calcium Score.

Wohlfahrt P, Pazderník M, Marhefková N, Roland R, Adla T, Earls J, Haluzík M, Dubský M

pubmed logopapersAug 6 2025
<b><i>Objective:</i></b> Cardiovascular risk stratification based on traditional risk factors lacks precision at the individual level. While coronary artery calcium (CAC) scoring enhances risk prediction by detecting calcified atherosclerotic plaques, it may underestimate risk in individuals with noncalcified plaques-a pattern common in younger type 1 diabetes (T1D) patients. Understanding the prevalence of noncalcified atherosclerosis in T1D is crucial for developing more effective screening strategies. Therefore, this study aimed to assess the burden of clinically significant atherosclerosis in T1D patients with CAC <100 using artificial intelligence (AI)-guided quantitative coronary computed tomographic angiography (AI-QCT). <b><i>Methods:</i></b> This study enrolled T1D patients aged ≥30 years with disease duration ≥10 years and no manifest or symptomatic atherosclerotic cardiovascular disease (ASCVD). CAC and carotid ultrasound were assessed in all participants. AI-QCT was performed in patients with CAC 0 and at least one plaque in the carotid arteries or those with CAC 1-99. <b><i>Results:</i></b> Among the 167 participants (mean age 52 ± 10 years; 44% women; T1D duration 29 ± 11 years), 93 (56%) had CAC = 0, 46 (28%) had CAC 1-99, 8 (5%) had CAC 100-299, and 20 (12%) had CAC ≥300. AI-QCT was performed in a subset of 52 patients. Only 11 (21%) had no evidence of coronary artery disease. Significant coronary stenosis was identified in 17% of patients, and 30 (73%) presented with at least one high-risk plaque. Compared with CAC-based risk categories, AI-QCT reclassified 58% of patients, and 21% compared with the STENO1 risk categories. There was only fair agreement between AI-QCT and CAC (κ = 0.25), and a slight agreement between AI-QCT and STENO1 risk categories (κ = 0.02). <b><i>Conclusion:</i></b> AI-QCT may reveal subclinical atherosclerotic burden and high-risk features that remain undetected by traditional risk models or CAC. These findings challenge the assumption that a low CAC score equates to a low cardiovascular risk in T1D.

Augmentation-based Domain Generalization and Joint Training from Multiple Source Domains for Whole Heart Segmentation

Franz Thaler, Darko Stern, Gernot Plank, Martin Urschler

arxiv logopreprintAug 6 2025
As the leading cause of death worldwide, cardiovascular diseases motivate the development of more sophisticated methods to analyze the heart and its substructures from medical images like Computed Tomography (CT) and Magnetic Resonance (MR). Semantic segmentations of important cardiac structures that represent the whole heart are useful to assess patient-specific cardiac morphology and pathology. Furthermore, accurate semantic segmentations can be used to generate cardiac digital twin models which allows e.g. electrophysiological simulation and personalized therapy planning. Even though deep learning-based methods for medical image segmentation achieved great advancements over the last decade, retaining good performance under domain shift -- i.e. when training and test data are sampled from different data distributions -- remains challenging. In order to perform well on domains known at training-time, we employ a (1) balanced joint training approach that utilizes CT and MR data in equal amounts from different source domains. Further, aiming to alleviate domain shift towards domains only encountered at test-time, we rely on (2) strong intensity and spatial augmentation techniques to greatly diversify the available training data. Our proposed whole heart segmentation method, a 5-fold ensemble with our contributions, achieves the best performance for MR data overall and a performance similar to the best performance for CT data when compared to a model trained solely on CT. With 93.33% DSC and 0.8388 mm ASSD for CT and 89.30% DSC and 1.2411 mm ASSD for MR data, our method demonstrates great potential to efficiently obtain accurate semantic segmentations from which patient-specific cardiac twin models can be generated.
Page 12 of 38375 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.