Sort by:
Page 119 of 4003995 results

Optimizing Thyroid Nodule Management With Artificial Intelligence: Multicenter Retrospective Study on Reducing Unnecessary Fine Needle Aspirations.

Ni JH, Liu YY, Chen C, Shi YL, Zhao X, Li XL, Ye BB, Hu JL, Mou LC, Sun LP, Fu HJ, Zhu XX, Zhang YF, Guo L, Xu HX

pubmed logopapersJul 30 2025
Most artificial intelligence (AI) models for thyroid nodules are designed to screen for malignancy to guide further interventions; however, these models have not yet been fully implemented in clinical practice. This study aimed to evaluate AI in real clinical settings for identifying potentially benign thyroid nodules initially deemed to be at risk for malignancy by radiologists, reducing unnecessary fine needle aspiration (FNA) and optimizing management. We retrospectively collected a validation cohort of thyroid nodules that had undergone FNA. These nodules were initially assessed as "suspicious for malignancy" by radiologists based on ultrasound features, following standard clinical practice, which prompted further FNA procedures. Ultrasound images of these nodules were re-evaluated using a deep learning-based AI system, and its diagnostic performance was assessed in terms of correct identification of benign nodules and error identification of malignant nodules. Performance metrics such as sensitivity, specificity, and the area under the receiver operating characteristic curve were calculated. In addition, a separate comparison cohort was retrospectively assembled to compare the AI system's ability to correctly identify benign thyroid nodules with that of radiologists. The validation cohort comprised 4572 thyroid nodules (benign: n=3134, 68.5%; malignant: n=1438, 31.5%). AI correctly identified 2719 (86.8% among benign nodules) and reduced unnecessary FNAs from 68.5% (3134/4572) to 9.1% (415/4572). However, 123 malignant nodules (8.6% of malignant cases) were mistakenly identified as benign, with the majority of these being of low or intermediate suspicion. In the comparison cohort, AI successfully identified 81.4% (96/118) of benign nodules. It outperformed junior and senior radiologists, who identified only 40% and 55%, respectively. The area under the curve (AUC) for the AI model was 0.88 (95% CI 0.85-0.91), demonstrating a superior AUC compared with that of the junior radiologists (AUC=0.43, 95% CI 0.36-0.50; P=.002) and senior radiologists (AUC=0.63, 95% CI 0.55-0.70; P=.003). Compared with radiologists, AI can better serve as a "goalkeeper" in reducing unnecessary FNAs by identifying benign nodules that are initially assessed as malignant by radiologists. However, active surveillance is still necessary for all these nodules since a very small number of low-aggressiveness malignant nodules may be mistakenly identified.

Optimizing Federated Learning Configurations for MRI Prostate Segmentation and Cancer Detection: A Simulation Study.

Moradi A, Zerka F, Bosma JS, Sunoqrot MRS, Abrahamsen BS, Yakar D, Geerdink J, Huisman H, Bathen TF, Elschot M

pubmed logopapersJul 30 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To develop and optimize a federated learning (FL) framework across multiple clients for biparametric MRI prostate segmentation and clinically significant prostate cancer (csPCa) detection. Materials and Methods A retrospective study was conducted using Flower FL to train a nnU-Net-based architecture for MRI prostate segmentation and csPCa detection, using data collected from January 2010 to August 2021. Model development included training and optimizing local epochs, federated rounds, and aggregation strategies for FL-based prostate segmentation on T2-weighted MRIs (four clients, 1294 patients) and csPCa detection using biparametric MRIs (three clients, 1440 patients). Performance was evaluated on independent test sets using the Dice score for segmentation and the Prostate Imaging: Cancer Artificial Intelligence (PI-CAI) score, defined as the average of the area under the receiver operating characteristic curve and average precision, for csPCa detection. <i>P</i> values for performance differences were calculated using permutation testing. Results The FL configurations were independently optimized for both tasks, showing improved performance at 1 epoch 300 rounds using FedMedian for prostate segmentation and 5 epochs 200 rounds using FedAdagrad, for csPCa detection. Compared with the average performance of the clients, the optimized FL model significantly improved performance in prostate segmentation (Dice score increase from 0.73 ± 0.06 to 0.88 ± 0.03; <i>P</i> ≤ .01) and csPCa detection (PI-CAI score increase from 0.63 ± 0.07 to 0.74 ± 0.06; <i>P</i> ≤ .01) on the independent test set. The optimized FL model showed higher lesion detection performance compared with the FL-baseline model (PICAI score increase from 0.72 ± 0.06 to 0.74 ± 0.06; <i>P</i> ≤ .01), but no evidence of a difference was observed for prostate segmentation (Dice scores, 0.87 ± 0.03 vs 0.88 ± 03; <i>P</i> > .05). Conclusion FL enhanced the performance and generalizability of MRI prostate segmentation and csPCa detection compared with local models, and optimizing its configuration further improved lesion detection performance. ©RSNA, 2025.

WSDC-ViT: a novel transformer network for pneumonia image classification based on windows scalable attention and dynamic rectified linear unit convolutional modules.

Gu Y, Bai H, Chen M, Yang L, Zhang B, Wang J, Lu X, Li J, Liu X, Yu D, Zhao Y, Tang S, He Q

pubmed logopapersJul 30 2025
Accurate differential diagnosis of pneumonia remains a challenging task, as different types of pneumonia require distinct treatment strategies. Early and precise diagnosis is crucial for minimizing the risk of misdiagnosis and for effectively guiding clinical decision-making and monitoring treatment response. This study proposes the WSDC-ViT network to enhance computer-aided pneumonia detection and alleviate the diagnostic workload for radiologists. Unlike existing models such as Swin Transformer or CoAtNet, which primarily improve attention mechanisms through hierarchical designs or convolutional embedding, WSDC-ViT introduces a novel architecture that simultaneously enhances global and local feature extraction through a scalable self-attention mechanism and convolutional refinement. Specifically, the network integrates a scalable self-attention mechanism that decouples the query, key, and value dimensions to reduce computational overhead and improve contextual learning, while an interactive window-based attention module further strengthens long-range dependency modeling. Additionally, a convolution-based module equipped with a dynamic ReLU activation function is embedded within the transformer encoder to capture fine-grained local details and adaptively enhance feature expression. Experimental results demonstrate that the proposed method achieves an average classification accuracy of 95.13% and an F1-score of 95.63% on a chest X-ray dataset, along with 99.36% accuracy and a 99.34% F1-score on a CT dataset. These results highlight the model's superior performance compared to existing automated pneumonia classification approaches, underscoring its potential clinical applicability.

Structural MRI-based Computer-aided Diagnosis Models for Alzheimer Disease: Insights into Misclassifications and Diagnostic Limitations.

Kang X, Lin J, Zhao K, Yan S, Chen P, Wang D, Yao H, Zhou B, Yu C, Wang P, Liao Z, Chen Y, Zhang X, Han Y, Lu J, Liu Y

pubmed logopapersJul 30 2025
<i>"Just Accepted" papers have undergone full peer review and have been accepted for publication in <i>Radiology: Artificial Intelligence</i>. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content.</i> Purpose To examine common patterns among different computer-aided diagnosis (CAD) models for Alzheimer's disease (AD) using structural MRI data and to characterize the clinical and imaging features associated with their misclassifications. Materials and Methods This retrospective study utilized 3258 baseline structural MRIs from five multisite datasets and two multidisease datasets collected between September 2005 and December 2019. The 3D Nested Hierarchical Transformer (3DNesT) model and other CAD techniques were utilized for AD classification using 10-fold cross-validation and cross-dataset validation. Subgroup analysis of CAD-misclassified individuals compared clinical/neuroimaging biomarkers using independent <i>t</i> tests with Bonferroni correction. Results This study included 1391 patients with AD (mean age, 72.1 ± 9.2 years, 757 female), 205 with other neurodegenerative diseases (mean age, 64.9 ± 9.9 years, 117 male), and 1662 healthy controls (mean age, 70.6 ± 7.6 years, 935 female). The 3DNesT model achieved 90.1 ± 2.3% crossvalidation accuracy and 82.2%, 90.1%, and 91.6% in three external datasets. Further analysis suggested that false negative (FN) subgroup (<i>n</i> = 223) exhibited minimal atrophy and better cognitive performance than true positive (TP) subgroup (MMSE, FN, 21.4 ± 4.4; TP, 19.7 ± 5.7; <i>P<sub>FWE</sub></i> < 0.001), despite displaying similar levels of amyloid beta (FN, 705.9 ± 353.9; TP, 665.7 ± 305.8; <i>P<sub>FWE</sub></i> = 0.47), Tau (FN, 352.4 ± 166.8; TP, 371.0 ± 141.8; <i>P<sub>FWE</sub></i> = 0.47) burden. Conclusion FN subgroup exhibited atypical structural MRI patterns and clinical measures, fundamentally limiting the diagnostic performance of CAD models based solely on structural MRI. ©RSNA, 2025.

Fine-grained Prototype Network for MRI Sequence Classification.

Yuan C, Jia X, Wang L, Yang C

pubmed logopapersJul 30 2025
Magnetic Resonance Imaging (MRI) is a crucial method for clinical diagnosis. Different abdominal MRI sequences provide tissue and structural information from various perspectives, offering reliable evidence for doctors to make accurate diagnoses. In recent years, with the rapid development of intelligent medical imaging, some studies have begun exploring deep learning methods for MRI sequence recognition. However, due to the significant intra-class variations and subtle inter-class differences in MRI sequences, traditional deep learning algorithms still struggle to effectively handle such types of complex distributed data. In addition, the key features for identifying MRI sequence categories often exist in subtle details, while significant discrepancies can be observed among sequences from individual samples. In contrast, current deep learning based MRI sequence classification methods tend to overlook these fine-grained differences across diverse samples. To overcome the above challenges, this paper proposes a fine-grained prototype network, SequencesNet, for MRI sequence classification. A network combining convolutional neural networks (CNNs) with improved vision transformers is constructed for feature extraction, considering both local and global information. Specifically, a Feature Selection Module (FSM) is added to the visual transformer, and fine-grained features for sequence discrimination are selected based on fused attention weights from multiple layers. Then, a Prototype Classification Module (PCM) is proposed to classify MRI sequences based on fine-grained MRI representations. Comprehensive experiments are conducted on a public abdominal MRI sequence classification dataset and a private dataset. Our proposed SequencesNet achieved the highest accuracy with 96.73% and 95.98% in two sequence classification datasets, respectively, and outperfom the comparative prototypes and fine-grained models. The visualization results exhibit that our proposed sequencesNet can better capture fine-grained information. The proposed SequencesNet shows promising performance in MRI sequence classification, excelling in distinguishing subtle inter-class differences and handling large intra-class variability. Specifically, FSM enhances clinical interpretability by focusing on fine-grained features, and PCM improves clustering by optimizing prototype-sample distances. Compared to baselines like 3DResNet18 and TransFG, SequencesNet achieves higher recall and precision, particularly for similar sequences like DCE-LAP and DCE-PVP. The proposed new MRI sequence classification model, SequencesNet, addresses the problem of subtle inter-class differences and significant intraclass variations existing in medical images. The modular design of SequencesNet can be extended to other medical imaging tasks, including but not limited to multimodal image fusion, lesion detection, and disease staging. Future work can be done to decrease the computational complexity and increase the generalization of the model.

Wall Shear Stress Estimation in Abdominal Aortic Aneurysms: Towards Generalisable Neural Surrogate Models

Patryk Rygiel, Julian Suk, Christoph Brune, Kak Khee Yeung, Jelmer M. Wolterink

arxiv logopreprintJul 30 2025
Abdominal aortic aneurysms (AAAs) are pathologic dilatations of the abdominal aorta posing a high fatality risk upon rupture. Studying AAA progression and rupture risk often involves in-silico blood flow modelling with computational fluid dynamics (CFD) and extraction of hemodynamic factors like time-averaged wall shear stress (TAWSS) or oscillatory shear index (OSI). However, CFD simulations are known to be computationally demanding. Hence, in recent years, geometric deep learning methods, operating directly on 3D shapes, have been proposed as compelling surrogates, estimating hemodynamic parameters in just a few seconds. In this work, we propose a geometric deep learning approach to estimating hemodynamics in AAA patients, and study its generalisability to common factors of real-world variation. We propose an E(3)-equivariant deep learning model utilising novel robust geometrical descriptors and projective geometric algebra. Our model is trained to estimate transient WSS using a dataset of CT scans of 100 AAA patients, from which lumen geometries are extracted and reference CFD simulations with varying boundary conditions are obtained. Results show that the model generalizes well within the distribution, as well as to the external test set. Moreover, the model can accurately estimate hemodynamics across geometry remodelling and changes in boundary conditions. Furthermore, we find that a trained model can be applied to different artery tree topologies, where new and unseen branches are added during inference. Finally, we find that the model is to a large extent agnostic to mesh resolution. These results show the accuracy and generalisation of the proposed model, and highlight its potential to contribute to hemodynamic parameter estimation in clinical practice.

A generalizable diffusion framework for 3D low-dose and few-view cardiac SPECT imaging.

Xie H, Gan W, Ji W, Chen X, Alashi A, Thorn SL, Zhou B, Liu Q, Xia M, Guo X, Liu YH, An H, Kamilov US, Wang G, Sinusas AJ, Liu C

pubmed logopapersJul 30 2025
Myocardial perfusion imaging using SPECT is widely utilized to diagnose coronary artery diseases, but image quality can be negatively affected in low-dose and few-view acquisition settings. Although various deep learning methods have been introduced to improve image quality from low-dose or few-view SPECT data, previous approaches often fail to generalize across different acquisition settings, limiting realistic applicability. This work introduced DiffSPECT-3D, a diffusion framework for 3D cardiac SPECT imaging that effectively adapts to different acquisition settings without requiring further network re-training or fine-tuning. Using both image and projection data, a consistency strategy is proposed to ensure that diffusion sampling at each step aligns with the low-dose/few-view projection measurements, the image data, and the scanner geometry, thus enabling generalization to different low-dose/few-view settings. Incorporating anatomical spatial information from CT and total variation constraint, we proposed a 2.5D conditional strategy to allow DiffSPECT-3D to observe 3D contextual information from the entire image volume, addressing the 3D memory/computational issues in diffusion model. We extensively evaluated the proposed method on 1,325 clinical <sup>99m</sup>Tc tetrofosmin stress/rest studies from 795 patients. Each study was reconstructed into 5 different low-count levels and 5 different projection few-view levels for model evaluations, ranging from 1% to 50% and from 1 view to 9 view, respectively. Validated against cardiac catheterization results and diagnostic review from nuclear cardiologists, the presented results show the potential to achieve low-dose and few-view SPECT imaging without compromising clinical performance. Additionally, DiffSPECT-3D could be directly applied to full-dose SPECT images to further improve image quality, especially in a low-dose stress-first cardiac SPECT imaging protocol.

Learning from Heterogeneous Structural MRI via Collaborative Domain Adaptation for Late-Life Depression Assessment

Yuzhen Gao, Qianqian Wang, Yongheng Sun, Cui Wang, Yongquan Liang, Mingxia Liu

arxiv logopreprintJul 30 2025
Accurate identification of late-life depression (LLD) using structural brain MRI is essential for monitoring disease progression and facilitating timely intervention. However, existing learning-based approaches for LLD detection are often constrained by limited sample sizes (e.g., tens), which poses significant challenges for reliable model training and generalization. Although incorporating auxiliary datasets can expand the training set, substantial domain heterogeneity, such as differences in imaging protocols, scanner hardware, and population demographics, often undermines cross-domain transferability. To address this issue, we propose a Collaborative Domain Adaptation (CDA) framework for LLD detection using T1-weighted MRIs. The CDA leverages a Vision Transformer (ViT) to capture global anatomical context and a Convolutional Neural Network (CNN) to extract local structural features, with each branch comprising an encoder and a classifier. The CDA framework consists of three stages: (a) supervised training on labeled source data, (b) self-supervised target feature adaptation and (c) collaborative training on unlabeled target data. We first train ViT and CNN on source data, followed by self-supervised target feature adaptation by minimizing the discrepancy between classifier outputs from two branches to make the categorical boundary clearer. The collaborative training stage employs pseudo-labeled and augmented target-domain MRIs, enforcing prediction consistency under strong and weak augmentation to enhance domain robustness and generalization. Extensive experiments conducted on multi-site T1-weighted MRI data demonstrate that the CDA consistently outperforms state-of-the-art unsupervised domain adaptation methods.

Whole-brain Transferable Representations from Large-Scale fMRI Data Improve Task-Evoked Brain Activity Decoding

Yueh-Po Peng, Vincent K. M. Cheung, Li Su

arxiv logopreprintJul 30 2025
A fundamental challenge in neuroscience is to decode mental states from brain activity. While functional magnetic resonance imaging (fMRI) offers a non-invasive approach to capture brain-wide neural dynamics with high spatial precision, decoding from fMRI data -- particularly from task-evoked activity -- remains challenging due to its high dimensionality, low signal-to-noise ratio, and limited within-subject data. Here, we leverage recent advances in computer vision and propose STDA-SwiFT, a transformer-based model that learns transferable representations from large-scale fMRI datasets via spatial-temporal divided attention and self-supervised contrastive learning. Using pretrained voxel-wise representations from 995 subjects in the Human Connectome Project (HCP), we show that our model substantially improves downstream decoding performance of task-evoked activity across multiple sensory and cognitive domains, even with minimal data preprocessing. We demonstrate performance gains from larger receptor fields afforded by our memory-efficient attention mechanism, as well as the impact of functional relevance in pretraining data when fine-tuning on small samples. Our work showcases transfer learning as a viable approach to harness large-scale datasets to overcome challenges in decoding brain activity from fMRI data.

Optimizing Federated Learning Configurations for MRI Prostate Segmentation and Cancer Detection: A Simulation Study

Ashkan Moradi, Fadila Zerka, Joeran S. Bosma, Mohammed R. S. Sunoqrot, Bendik S. Abrahamsen, Derya Yakar, Jeroen Geerdink, Henkjan Huisman, Tone Frost Bathen, Mattijs Elschot

arxiv logopreprintJul 30 2025
Purpose: To develop and optimize a federated learning (FL) framework across multiple clients for biparametric MRI prostate segmentation and clinically significant prostate cancer (csPCa) detection. Materials and Methods: A retrospective study was conducted using Flower FL to train a nnU-Net-based architecture for MRI prostate segmentation and csPCa detection, using data collected from January 2010 to August 2021. Model development included training and optimizing local epochs, federated rounds, and aggregation strategies for FL-based prostate segmentation on T2-weighted MRIs (four clients, 1294 patients) and csPCa detection using biparametric MRIs (three clients, 1440 patients). Performance was evaluated on independent test sets using the Dice score for segmentation and the Prostate Imaging: Cancer Artificial Intelligence (PI-CAI) score, defined as the average of the area under the receiver operating characteristic curve and average precision, for csPCa detection. P-values for performance differences were calculated using permutation testing. Results: The FL configurations were independently optimized for both tasks, showing improved performance at 1 epoch 300 rounds using FedMedian for prostate segmentation and 5 epochs 200 rounds using FedAdagrad, for csPCa detection. Compared with the average performance of the clients, the optimized FL model significantly improved performance in prostate segmentation and csPCa detection on the independent test set. The optimized FL model showed higher lesion detection performance compared to the FL-baseline model, but no evidence of a difference was observed for prostate segmentation. Conclusions: FL enhanced the performance and generalizability of MRI prostate segmentation and csPCa detection compared with local models, and optimizing its configuration further improved lesion detection performance.
Page 119 of 4003995 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.