Sort by:
Page 117 of 1331322 results

SPARS: Self-Play Adversarial Reinforcement Learning for Segmentation of Liver Tumours

Catalina Tan, Yipeng Hu, Shaheer U. Saeed

arxiv logopreprintMay 25 2025
Accurate tumour segmentation is vital for various targeted diagnostic and therapeutic procedures for cancer, e.g., planning biopsies or tumour ablations. Manual delineation is extremely labour-intensive, requiring substantial expert time. Fully-supervised machine learning models aim to automate such localisation tasks, but require a large number of costly and often subjective 3D voxel-level labels for training. The high-variance and subjectivity in such labels impacts model generalisability, even when large datasets are available. Histopathology labels may offer more objective labels but the infeasibility of acquiring pixel-level annotations to develop tumour localisation methods based on histology remains challenging in-vivo. In this work, we propose a novel weakly-supervised semantic segmentation framework called SPARS (Self-Play Adversarial Reinforcement Learning for Segmentation), which utilises an object presence classifier, trained on a small number of image-level binary cancer presence labels, to localise cancerous regions on CT scans. Such binary labels of patient-level cancer presence can be sourced more feasibly from biopsies and histopathology reports, enabling a more objective cancer localisation on medical images. Evaluating with real patient data, we observed that SPARS yielded a mean dice score of $77.3 \pm 9.4$, which outperformed other weakly-supervised methods by large margins. This performance was comparable with recent fully-supervised methods that require voxel-level annotations. Our results demonstrate the potential of using SPARS to reduce the need for extensive human-annotated labels to detect cancer in real-world healthcare settings.

Pulse Pressure, White Matter Hyperintensities, and Cognition: Mediating Effects Across the Adult Lifespan.

Hannan J, Newman-Norlund S, Busby N, Wilson SC, Newman-Norlund R, Rorden C, Fridriksson J, Bonilha L, Riccardi N

pubmed logopapersMay 25 2025
To investigate whether pulse pressure or mean arterial pressure mediates the relationship between age and white matter hyperintensity load and to examine the mediating effect of white matter hyperintensities on cognition. Demographic information, blood pressure, current medication lists, and Montreal Cognitive Assessment scores for 231 stroke- and dementia-free adults were retrospectively obtained from the Aging Brain Cohort study. Total WMH load was determined from T2-FLAIR magnetic resonance scans using the TrUE-Net deep learning tool for white matter segmentation. In separate models, we used mediation analysis to assess whether pulse pressure or MAP mediates the relationship between age and total white matter hyperintensity load, controlling for cardiovascular confounds. We also assessed whether white matter hyperintensity load mediated the relationship between age and cognitive scores. Pulse pressure, but not mean arterial pressure, significantly mediated the relationship between age and white matter hyperintensity load. White matter hyperintensity load partially mediated the relationship between age and Montreal Cognitive Assessment score. Our results indicate that pulse pressure, but not mean arterial pressure, is mechanistically associated with age-related accumulation of white matter hyperintensities, independent of other cardiovascular risk factors. White matter hyperintensity load was a mediator of cognitive scores across the adult lifespan. Effective management of pulse pressure may be especially important for maintenance of brain health and cognition.

Symbolic and hybrid AI for brain tissue segmentation using spatial model checking.

Belmonte G, Ciancia V, Massink M

pubmed logopapersMay 24 2025
Segmentation of 3D medical images, and brain segmentation in particular, is an important topic in neuroimaging and in radiotherapy. Overcoming the current, time consuming, practise of manual delineation of brain tumours and providing an accurate, explainable, and replicable method of segmentation of the tumour area and related tissues is therefore an open research challenge. In this paper, we first propose a novel symbolic approach to brain segmentation and delineation of brain lesions based on spatial model checking. This method has its foundations in the theory of closure spaces, a generalisation of topological spaces, and spatial logics. At its core is a high-level declarative logic language for image analysis, ImgQL, and an efficient spatial model checker, VoxLogicA, exploiting state-of-the-art image analysis libraries in its model checking algorithm. We then illustrate how this technique can be combined with Machine Learning techniques leading to a hybrid AI approach that provides accurate and explainable segmentation results. We show the results of the application of the symbolic approach on several public datasets with 3D magnetic resonance (MR) images. Three datasets are provided by the 2017, 2019 and 2020 international MICCAI BraTS Challenges with 210, 259 and 293 MR images, respectively, and the fourth is the BrainWeb dataset with 20 (synthetic) 3D patient images of the normal brain. We then apply the hybrid AI method to the BraTS 2020 training set. Our segmentation results are shown to be in line with the state-of-the-art with respect to other recent approaches, both from the accuracy point of view as well as from the view of computational efficiency, but with the advantage of them being explainable.

MSLAU-Net: A Hybird CNN-Transformer Network for Medical Image Segmentation

Libin Lan, Yanxin Li, Xiaojuan Liu, Juan Zhou, Jianxun Zhang, Nannan Huang, Yudong Zhang

arxiv logopreprintMay 24 2025
Both CNN-based and Transformer-based methods have achieved remarkable success in medical image segmentation tasks. However, CNN-based methods struggle to effectively capture global contextual information due to the inherent limitations of convolution operations. Meanwhile, Transformer-based methods suffer from insufficient local feature modeling and face challenges related to the high computational complexity caused by the self-attention mechanism. To address these limitations, we propose a novel hybrid CNN-Transformer architecture, named MSLAU-Net, which integrates the strengths of both paradigms. The proposed MSLAU-Net incorporates two key ideas. First, it introduces Multi-Scale Linear Attention, designed to efficiently extract multi-scale features from medical images while modeling long-range dependencies with low computational complexity. Second, it adopts a top-down feature aggregation mechanism, which performs multi-level feature aggregation and restores spatial resolution using a lightweight structure. Extensive experiments conducted on benchmark datasets covering three imaging modalities demonstrate that the proposed MSLAU-Net outperforms other state-of-the-art methods on nearly all evaluation metrics, validating the superiority, effectiveness, and robustness of our approach. Our code is available at https://github.com/Monsoon49/MSLAU-Net.

SW-ViT: A Spatio-Temporal Vision Transformer Network with Post Denoiser for Sequential Multi-Push Ultrasound Shear Wave Elastography

Ahsan Habib Akash, MD Jahin Alam, Md. Kamrul Hasan

arxiv logopreprintMay 24 2025
Objective: Ultrasound Shear Wave Elastography (SWE) demonstrates great potential in assessing soft-tissue pathology by mapping tissue stiffness, which is linked to malignancy. Traditional SWE methods have shown promise in estimating tissue elasticity, yet their susceptibility to noise interference, reliance on limited training data, and inability to generate segmentation masks concurrently present notable challenges to accuracy and reliability. Approach: In this paper, we propose SW-ViT, a novel two-stage deep learning framework for SWE that integrates a CNN-Spatio-Temporal Vision Transformer-based reconstruction network with an efficient Transformer-based post-denoising network. The first stage uses a 3D ResNet encoder with multi-resolution spatio-temporal Transformer blocks that capture spatial and temporal features, followed by a squeeze-and-excitation attention decoder that reconstructs 2D stiffness maps. To address data limitations, a patch-based training strategy is adopted for localized learning and reconstruction. In the second stage, a denoising network with a shared encoder and dual decoders processes inclusion and background regions to produce a refined stiffness map and segmentation mask. A hybrid loss combining regional, smoothness, fusion, and Intersection over Union (IoU) components ensures improvements in both reconstruction and segmentation. Results: On simulated data, our method achieves PSNR of 32.68 dB, CNR of 46.78 dB, and SSIM of 0.995. On phantom data, results include PSNR of 21.11 dB, CNR of 42.14 dB, and SSIM of 0.936. Segmentation IoU values reach 0.949 (simulation) and 0.738 (phantom) with ASSD values being 0.184 and 1.011, respectively. Significance: SW-ViT delivers robust, high-quality elasticity map estimates from noisy SWE data and holds clear promise for clinical application.

TK-Mamba: Marrying KAN with Mamba for Text-Driven 3D Medical Image Segmentation

Haoyu Yang, Yuxiang Cai, Jintao Chen, Xuhong Zhang, Wenhui Lei, Xiaoming Shi, Jianwei Yin, Yankai Jiang

arxiv logopreprintMay 24 2025
3D medical image segmentation is vital for clinical diagnosis and treatment but is challenged by high-dimensional data and complex spatial dependencies. Traditional single-modality networks, such as CNNs and Transformers, are often limited by computational inefficiency and constrained contextual modeling in 3D settings. We introduce a novel multimodal framework that leverages Mamba and Kolmogorov-Arnold Networks (KAN) as an efficient backbone for long-sequence modeling. Our approach features three key innovations: First, an EGSC (Enhanced Gated Spatial Convolution) module captures spatial information when unfolding 3D images into 1D sequences. Second, we extend Group-Rational KAN (GR-KAN), a Kolmogorov-Arnold Networks variant with rational basis functions, into 3D-Group-Rational KAN (3D-GR-KAN) for 3D medical imaging - its first application in this domain - enabling superior feature representation tailored to volumetric data. Third, a dual-branch text-driven strategy leverages CLIP's text embeddings: one branch swaps one-hot labels for semantic vectors to preserve inter-organ semantic relationships, while the other aligns images with detailed organ descriptions to enhance semantic alignment. Experiments on the Medical Segmentation Decathlon (MSD) and KiTS23 datasets show our method achieving state-of-the-art performance, surpassing existing approaches in accuracy and efficiency. This work highlights the power of combining advanced sequence modeling, extended network architectures, and vision-language synergy to push forward 3D medical image segmentation, delivering a scalable solution for clinical use. The source code is openly available at https://github.com/yhy-whu/TK-Mamba.

EnsembleEdgeFusion: advancing semantic segmentation in microvascular decompression imaging with innovative ensemble techniques.

Dhiyanesh B, Vijayalakshmi M, Saranya P, Viji D

pubmed logopapersMay 23 2025
Semantic segmentation involves an imminent part in the investigation of medical images, particularly in the domain of microvascular decompression, where publicly available datasets are scarce, and expert annotation is demanding. In response to this challenge, this study presents a meticulously curated dataset comprising 2003 RGB microvascular decompression images, each intricately paired with annotated masks. Extensive data preprocessing and augmentation strategies were employed to fortify the training dataset, enhancing the robustness of proposed deep learning model. Numerous up-to-date semantic segmentation approaches, including DeepLabv3+, U-Net, DilatedFastFCN with JPU, DANet, and a custom Vanilla architecture, were trained and evaluated using diverse performance metrics. Among these models, DeepLabv3 + emerged as a strong contender, notably excelling in F1 score. Innovatively, ensemble techniques, such as stacking and bagging, were introduced to further elevate segmentation performance. Bagging, notably with the Naïve Bayes approach, exhibited significant improvements, underscoring the potential of ensemble methods in medical image segmentation. The proposed EnsembleEdgeFusion technique exhibited superior loss reduction during training compared to DeepLabv3 + and achieved maximum Mean Intersection over Union (MIoU) scores of 77.73%, surpassing other models. Category-wise analysis affirmed its superiority in accurately delineating various categories within the test dataset.

Evaluation of a deep-learning segmentation model for patients with colorectal cancer liver metastases (COALA) in the radiological workflow.

Zeeuw M, Bereska J, Strampel M, Wagenaar L, Janssen B, Marquering H, Kemna R, van Waesberghe JH, van den Bergh J, Nota I, Moos S, Nio Y, Kop M, Kist J, Struik F, Wesdorp N, Nelissen J, Rus K, de Sitter A, Stoker J, Huiskens J, Verpalen I, Kazemier G

pubmed logopapersMay 23 2025
For patients with colorectal liver metastases (CRLM), total tumor volume (TTV) is prognostic. A deep-learning segmentation model for CRLM to assess TTV called COlorectal cAncer Liver metastases Assessment (COALA) has been developed. This study evaluated COALA's performance and practical utility in the radiological picture archiving and communication system (PACS). A secondary aim was to provide lessons for future researchers on the implementation of artificial intelligence (AI) models. Patients discussed between January and December 2023 in a multidisciplinary meeting for CRLM were included. In those patients, CRLM was automatically segmented in portal-venous phase CT scans by COALA and integrated with PACS. Eight expert abdominal radiologists completed a questionnaire addressing segmentation accuracy and PACS integration. They were also asked to write down general remarks. In total, 57 patients were evaluated. Of those patients, 112 contrast-enhanced portal-venous phase CT scans were analyzed. Of eight radiologists, six (75%) evaluated the model as user-friendly in their radiological workflow. Areas of improvement of the COALA model were the segmentation of small lesions, heterogeneous lesions, and lesions at the border of the liver with involvement of the diaphragm or heart. Key lessons for implementation were a multidisciplinary approach, a robust method prior to model development and organizing evaluation sessions with end-users early in the development phase. This study demonstrates that the deep-learning segmentation model for patients with CRLM (COALA) is user-friendly in the radiologist's PACS. Future researchers striving for implementation should have a multidisciplinary approach, propose a robust methodology and involve end-users prior to model development. Many segmentation models are being developed, but none of those models are evaluated in the (radiological) workflow or clinically implemented. Our model is implemented in the radiological work system, providing valuable lessons for researchers to achieve clinical implementation. Developed segmentation models should be implemented in the radiological workflow. Our implemented segmentation model provides valuable lessons for future researchers. If implemented in clinical practice, our model could allow for objective radiological evaluation.

Novel Deep Learning Framework for Simultaneous Assessment of Left Ventricular Mass and Longitudinal Strain: Clinical Feasibility and Validation in Patients with Hypertrophic Cardiomyopathy

Park, J., Yoon, Y. E., Jang, Y., Jung, T., Jeon, J., Lee, S.-A., Choi, H.-M., Hwang, I.-C., Chun, E. J., Cho, G.-Y., Chang, H.-J.

medrxiv logopreprintMay 23 2025
BackgroundThis study aims to present the Segmentation-based Myocardial Advanced Refinement Tracking (SMART) system, a novel artificial intelligence (AI)-based framework for transthoracic echocardiography (TTE) that incorporates motion tracking and left ventricular (LV) myocardial segmentation for automated LV mass (LVM) and global longitudinal strain (LVGLS) assessment. MethodsThe SMART system demonstrates LV speckle tracking based on motion vector estimation, refined by structural information using endocardial and epicardial segmentation throughout the cardiac cycle. This approach enables automated measurement of LVMSMART and LVGLSSMART. The feasibility of SMART is validated in 111 hypertrophic cardiomyopathy (HCM) patients (median age: 58 years, 69% male) who underwent TTE and cardiac magnetic resonance imaging (CMR). ResultsLVGLSSMART showed a strong correlation with conventional manual LVGLS measurements (Pearsons correlation coefficient [PCC] 0.851; mean difference 0 [-2-0]). When compared to CMR as the reference standard for LVM, the conventional dimension-based TTE method overestimated LVM (PCC 0.652; mean difference: 106 [90-123]), whereas LVMSMART demonstrated excellent agreement with CMR (PCC 0.843; mean difference: 1 [-11-13]). For predicting extensive myocardial fibrosis, LVGLSSMART and LVMSMART exhibited performance comparable to conventional LVGLS and CMR (AUC: 0.72 and 0.66, respectively). Patients identified as high-risk for extensive fibrosis by LVGLSSMART and LVMSMART had significantly higher rates of adverse outcomes, including heart failure hospitalization, new-onset atrial fibrillation, and defibrillator implantation. ConclusionsThe SMART technique provides a comparable LVGLS evaluation and a more accurate LVM assessment than conventional TTE, with predictive values for myocardial fibrosis and adverse outcomes. These findings support its utility in HCM management.

Artificial intelligence automated measurements of spinopelvic parameters in adult spinal deformity-a systematic review.

Bishara A, Patel S, Warman A, Jo J, Hughes LP, Khalifeh JM, Azad TD

pubmed logopapersMay 23 2025
This review evaluates advances made in deep learning (DL) applications to automatic spinopelvic parameter estimation, comparing their accuracy to manual measurements performed by surgeons. The PubMed database was queried for studies on DL measurement of adult spinopelvic parameters between 2014 and 2024. Studies were excluded if they focused on pediatric patients, non-deformity-related conditions, non-human subjects, or if they lacked sufficient quantitative data comparing DL models to human measurements. Included studies were assessed based on model architecture, patient demographics, training, validation, testing methods, and sample sizes, as well as performance compared to manual methods. Of 442 screened articles, 16 were included, with sample sizes ranging from 15 to 9,832 radiograph images and reporting interclass correlation coefficients (ICCs) of 0.56 to 1.00. Measurements of pelvic tilt, pelvic incidence, T4-T12 kyphosis, L1-L4 lordosis, and SVA showed consistently high ICCs (>0.80) and low mean absolute deviations (MADs <6°), with substantial number of studies reporting pelvic tilt achieving an excellent ICC of 0.90 or greater. In contrast, T1-T12 kyphosis and L4-S1 lordosis exhibited lower ICCs and higher measurement errors. Overall, most DL models demonstrated strong correlations (>0.80) with clinician measurements and minimal differences compared to manual references, except for T1-T12 kyphosis (average Pearson correlation: 0.68), L1-L4 lordosis (average Pearson correlation: 0.75), and L4-S1 lordosis (average Pearson correlation: 0.65). Novel computer vision algorithms show promising accuracy in measuring spinopelvic parameters, comparable to manual surgeon measurements. Future research should focus on external validation, additional imaging modalities, and the feasibility of integration in clinical settings to assess model reliability and predictive capacity.
Page 117 of 1331322 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.