Sort by:
Page 116 of 1411403 results

Scatter and beam hardening effect corrections in pelvic region cone beam CT images using a convolutional neural network.

Yagi S, Usui K, Ogawa K

pubmed logopapersJun 1 2025
The aim of this study is to remove scattered photons and beam hardening effect in cone beam CT (CBCT) images and make an image available for treatment planning. To remove scattered photons and beam hardening effect, a convolutional neural network (CNN) was used, and trained with distorted projection data including scattered photons and beam hardening effect and supervised projection data calculated with monochromatic X-rays. The number of training projection data was 17,280 with data augmentation and that of test projection data was 540. The performance of the CNN was investigated in terms of the number of photons in the projection data used in the training of the network. Projection data of pelvic CBCT images (32 cases) were calculated with a Monte Carlo simulation with six different count levels ranging from 0.5 to 3 million counts/pixel. For the evaluation of corrected images, the peak signal-to-noise ratio (PSNR), the structural similarity index measure (SSIM), and the sum of absolute difference (SAD) were used. The results of simulations showed that the CNN could effectively remove scattered photons and beam hardening effect, and the PSNR, the SSIM, and the SAD significantly improved. It was also found that the number of photons in the training projection data was important in correction accuracy. Furthermore, a CNN model trained with projection data with a sufficient number of photons could yield good performance even though a small number of photons were used in the input projection data.

Accuracy of a deep neural network for automated pulmonary embolism detection on dedicated CT pulmonary angiograms.

Zsarnoczay E, Rapaka S, Schoepf UJ, Gnasso C, Vecsey-Nagy M, Todoran TM, Hagar MT, Kravchenko D, Tremamunno G, Griffith JP, Fink N, Derrick S, Bowman M, Sam H, Tiller M, Godoy K, Condrea F, Sharma P, O'Doherty J, Maurovich-Horvat P, Emrich T, Varga-Szemes A

pubmed logopapersJun 1 2025
To assess the performance of a Deep Neural Network (DNN)-based prototype algorithm for automated PE detection on CTPA scans. Patients who had previously undergone CTPA with three different systems (SOMATOM Force, go.Top, and Definition AS; Siemens Healthineers, Forchheim, Germany) because of suspected PE from September 2022 to January 2023 were retrospectively enrolled in this study (n = 1,000, 58.8 % women). For detailed evaluation, all PE were divided into three location-based subgroups: central arteries, lobar branches, and peripheral regions. Clinical reports served as ground truth. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy were determined to evaluate the performance of DNN-based PE detection. Cases were excluded due to incomplete data (n = 32), inconclusive report (n = 17), insufficient contrast detected in the pulmonary trunk (n = 40), or failure of the preprocessing algorithms (n = 8). Therefore, the final cohort included 903 cases with a PE prevalence of 12 % (n = 110). The model achieved a sensitivity, specificity, PPV, and NPV of 84.6, 95.1, 70.5, and 97.8 %, respectively, and delivered an overall accuracy of 93.8 %. Among the false positive cases (n = 39), common sources of error included lung masses, pneumonia, and contrast flow artifacts. Common sources of false negatives (n = 17) included chronic and subsegmental PEs. The proposed DNN-based algorithm provides excellent performance for the detection of PE, suggesting its potential utility to support radiologists in clinical reading and exam prioritization.

A computed tomography-based deep learning radiomics model for predicting the gender-age-physiology stage of patients with connective tissue disease-associated interstitial lung disease.

Long B, Li R, Wang R, Yin A, Zhuang Z, Jing Y, E L

pubmed logopapersJun 1 2025
To explore the feasibility of using a diagnostic model constructed with deep learning-radiomics (DLR) features extracted from chest computed tomography (CT) images to predict the gender-age-physiology (GAP) stage of patients with connective tissue disease-associated interstitial lung disease (CTD-ILD). The data of 264 CTD-ILD patients were retrospectively collected. GAP Stage I, II, III patients are 195, 56, 13 cases respectively. The latter two stages were combined into one group. The patients were randomized into a training set and a validation set. Single-input models were separately constructed using the selected radiomics and DL features, while DLR model was constructed from both sets of features. For all models, the support vector machine (SVM) and logistic regression (LR) algorithms were used for construction. The nomogram models were generated by integrating age, gender, and DLR features. The DLR model outperformed the radiomics and DL models in both the training set and the validation set. The predictive performance of the DLR model based on the LR algorithm was the best among all the feature-based models (AUC = 0.923). The comprehensive models had even greater performance in predicting the GAP stage of CTD-ILD patients. The comprehensive model using the SVM algorithm had the best performance of the two models (AUC = 0.951). The DLR model extracted from CT images can assist in the clinical prediction of the GAP stage of CTD-ILD patients. A nomogram showed even greater performance in predicting the GAP stage of CTD-ILD patients.

Early-stage lung cancer detection via thin-section low-dose CT reconstruction combined with AI in non-high risk populations: a large-scale real-world retrospective cohort study.

Ji G, Luo W, Zhu Y, Chen B, Wang M, Jiang L, Yang M, Song W, Yao P, Zheng T, Yu H, Zhang R, Wang C, Ding R, Zhuo X, Chen F, Li J, Tang X, Xian J, Song T, Tang J, Feng M, Shao J, Li W

pubmed logopapersJun 1 2025
Current lung cancer screening guidelines recommend annual low-dose computed tomography (LDCT) for high-risk individuals. However, the effectiveness of LDCT in non-high-risk individuals remains inadequately explored. With the incidence of lung cancer steadily increasing among non-high-risk individuals, this study aims to assess the risk of lung cancer in non-high-risk individuals and evaluate the potential of thin-section LDCT reconstruction combined with artificial intelligence (LDCT-TRAI) as a screening tool. A real-world cohort study on lung cancer screening was conducted at the West China Hospital of Sichuan University from January 2010 to July 2021. Participants were screened using either LDCT-TRAI or traditional thick-section LDCT without AI (traditional LDCT) . The AI system employed was the uAI-ChestCare software. Lung cancer diagnoses were confirmed through pathological examination. Among the 259 121 enrolled non-high-risk participants, 87 260 (33.7%) had positive screening results. Within 1 year, 728 (0.3%) participants were diagnosed with lung cancer, of whom 87.1% (634/728) were never-smokers, and 92.7% (675/728) presented with stage I disease. Compared with traditional LDCT, LDCT-TRAI demonstrated a higher lung cancer detection rate (0.3% vs. 0.2%, <i>P</i> < 0.001), particularly for stage I cancers (94.4% vs. 83.2%, <i>P</i> < 0.001), and was associated with improved survival outcomes (5-year overall survival rate: 95.4% vs. 81.3%, <i>P</i> < 0.0001). These findings highlight the importance of expanding lung cancer screening to non-high-risk populations, especially never-smokers. LDCT-TRAI outperformed traditional LDCT in detecting early-stage cancers and improving survival outcomes, underscoring its potential as a more effective screening tool for early lung cancer detection in this population.

Multi-level feature fusion network for kidney disease detection.

Rehman Khan SU

pubmed logopapersJun 1 2025
Kidney irregularities pose a significant public health challenge, often leading to severe complications, yet the limited availability of nephrologists makes early detection costly and time-consuming. To address this issue, we propose a deep learning framework for automated kidney disease detection, leveraging feature fusion and sequential modeling techniques to enhance diagnostic accuracy. Our study thoroughly evaluates six pretrained models under identical experimental conditions, identifying ResNet50 and VGG19 as the highly efficient models for feature extraction due to their deep residual learning and hierarchical representations. Our proposed methodology integrates feature fusion with an inception block to extract diverse feature representations while maintaining imbalance dataset overhead. To enhance sequential learning and capture long-term dependencies in disease progression, ConvLSTM is incorporated after feature fusion. Additionally, Inception block is employed after ConvLSTM to refine hierarchical feature extraction, further strengthening the proposed model ability to leverage both spatial and temporal patterns. To validate our approach, we introduce a new named Multiple Hospital Collected (MHC-CT) dataset, consisting of 1860 tumor and 1024 normal kidney CT scans, meticulously annotated by medical experts. Our model achieves 99.60 % accuracy on this dataset, demonstrating its robustness in binary classification. Furthermore, to assess its generalization capability, we evaluate the model on a publicly available benchmark multiclass CT scan dataset, achieving 91.31 % accuracy. The superior performance is attributed to the effective feature fusion using inception blocks and the sequential learning capabilities of ConvLSTM, which together enhance spatial and temporal feature representations. These results highlight the efficacy of the proposed framework in automating kidney disease detection, providing a reliable, and efficient solution for clinical decision-making. https://github.com/VS-EYE/KidneyDiseaseDetection.git.

Liver Tumor Prediction using Attention-Guided Convolutional Neural Networks and Genomic Feature Analysis.

Edwin Raja S, Sutha J, Elamparithi P, Jaya Deepthi K, Lalitha SD

pubmed logopapersJun 1 2025
The task of predicting liver tumors is critical as part of medical image analysis and genomics area since diagnosis and prognosis are important in making correct medical decisions. Silent characteristics of liver tumors and interactions between genomic and imaging features are also the main sources of challenges toward reliable predictions. To overcome these hurdles, this study presents two integrated approaches namely, - Attention-Guided Convolutional Neural Networks (AG-CNNs), and Genomic Feature Analysis Module (GFAM). Spatial and channel attention mechanisms in AG-CNN enable accurate tumor segmentation from CT images while providing detailed morphological profiling. Evaluation with three control databases TCIA, LiTS, and CRLM shows that our model produces more accurate output than relevant literature with an accuracy of 94.5%, a Dice Similarity Coefficient of 91.9%, and an F1-Score of 96.2% for the Dataset 3. More considerably, the proposed methods outperform all the other methods in different datasets in terms of recall, precision, and Specificity by up to 10 percent than all other methods including CELM, CAGS, DM-ML, and so on.•Utilization of Attention-Guided Convolutional Neural Networks (AG-CNN) enhances tumor region focus and segmentation accuracy.•Integration of Genomic Feature Analysis (GFAM) identifies molecular markers for subtype-specific tumor classification.

Lag-Net: Lag correction for cone-beam CT via a convolutional neural network.

Ren C, Kan S, Huang W, Xi Y, Ji X, Chen Y

pubmed logopapersJun 1 2025
Due to the presence of charge traps in amorphous silicon flat-panel detectors, lag signals are generated in consecutively captured projections. These signals lead to ghosting in projection images and severe lag artifacts in cone-beam computed tomography (CBCT) reconstructions. Traditional Linear Time-Invariant (LTI) correction need to measure lag correction factors (LCF) and may leave residual lag artifacts. This incomplete correction is partly attributed to the lack of consideration for exposure dependency. To measure the lag signals more accurately and suppress lag artifacts, we develop a novel hardware correction method. This method requires two scans of the same object, with adjustments to the operating timing of the CT instrumentation during the second scan to measure the lag signal from the first. While this hardware correction significantly mitigates lag artifacts, it is complex to implement and imposes high demands on the CT instrumentation. To enhance the process, We introduce a deep learning method called Lag-Net to remove lag signal, utilizing the nearly lag-free results from hardware correction as training targets for the network. Qualitative and quantitative analyses of experimental results on both simulated and real datasets demonstrate that deep learning correction significantly outperforms traditional LTI correction in terms of lag artifact suppression and image quality enhancement. Furthermore, the deep learning method achieves reconstruction results comparable to those obtained from hardware correction while avoiding the operational complexities associated with the hardware correction approach. The proposed hardware correction method, despite its operational complexity, demonstrates superior artifact suppression performance compared to the LTI algorithm, particularly under low-exposure conditions. The introduced Lag-Net, which utilizes the results of the hardware correction method as training targets, leverages the end-to-end nature of deep learning to circumvent the intricate operational drawbacks associated with hardware correction. Furthermore, the network's correction efficacy surpasses that of the LTI algorithm in low-exposure scenarios.

Deep learning-driven multi-class classification of brain strokes using computed tomography: A step towards enhanced diagnostic precision.

Kulathilake CD, Udupihille J, Abeysundara SP, Senoo A

pubmed logopapersJun 1 2025
To develop and validate deep learning models leveraging CT imaging for the prediction and classification of brain stroke conditions, with the potential to enhance accuracy and support clinical decision-making. This retrospective, bi-center study included data from 250 patients, with a dataset of 8186 CT images collected from 2017 to 2022. Two AI models were developed using the Expanded ResNet101 deep learning framework as a two-step model. Model performance was evaluated using confusion matrices, supplemented by external validation with an independent dataset. External validation was conducted by an expert and two external members. Overall accuracy, confidence intervals, Cohen's Kappa value, and McNemar's test P-values were calculated. A total of 8186 CT images were incorporated, with 6386 images used for the training and 900 datasets for testing and validation in Model 01. Further, 1619 CT images were used for training and 600 datasets for testing and validation in Model 02. The average accuracy, precision, and F1 score for both models were assessed: Model 01 achieved 99.6 %, 99.4 %, and 99.6 % respectively, whereas Model 02 achieved 99.2 %, 98.8 %, and 99.1 %. The external validation accuracies were 78.6 % (95 % CI: 0.73,0.83; P < 0.001) and 60.2 % (95 % CI: 0.48,0.70; P < 0.001) for Models 01 and 02 respectively, as evaluated by the expert. Deep learning models demonstrated high accuracy, precision, and F1 scores in predicting outcomes for brain stroke patients. With larger cohort and diverse radiologic mimics, these models could support clinicians in prognosis and decision-making.

Visceral Fat Quantified by a Fully Automated Deep-Learning Algorithm and Risk of Incident and Recurrent Diverticulitis.

Ha J, Bridge CP, Andriole KP, Kambadakone A, Clark MJ, Narimiti A, Rosenthal MH, Fintelmann FJ, Gollub RL, Giovannucci EL, Strate LL, Ma W, Chan AT

pubmed logopapersJun 1 2025
Obesity is a risk factor for diverticulitis. However, it remains unclear whether visceral fat area, a more precise measurement of abdominal fat, is associated with the risk of diverticulitis. To estimate the risk of incident and recurrent diverticulitis according to visceral fat area. A retrospective cohort study. The Mass General Brigham Biobank. A total of 6654 patients who underwent abdominal CT for clinical indications and had no diagnosis of diverticulitis, IBD, or cancer before the scan were included. Visceral fat area, subcutaneous fat area, and skeletal muscle area were quantified using a deep-learning model applied to abdominal CT. The main exposures were z -scores of body composition metrics normalized by age, sex, and race. Diverticulitis cases were identified using the International Classification of Diseases codes for the primary or admitting diagnosis from the electronic health records. The risks of incident diverticulitis, complicated diverticulitis, and recurrent diverticulitis requiring hospitalization according to quartiles of body composition metrics z -scores were estimated. A higher visceral fat area z -score was associated with an increased risk of incident diverticulitis (multivariable HR comparing the highest vs lowest quartile, 2.09; 95% CI, 1.48-2.95; p for trend <0.0001), complicated diverticulitis (HR, 2.56; 95% CI, 1.10-5.99; p for trend = 0.02), and recurrence requiring hospitalization (HR, 2.76; 95% CI, 1.15-6.62; p for trend = 0.03). The association between visceral fat area and diverticulitis was not materially different among different strata of BMI. Subcutaneous fat area and skeletal muscle area were not significantly associated with diverticulitis. The study population was limited to individuals who underwent CT scans for medical indication. Higher visceral fat area derived from CT was associated with incident and recurrent diverticulitis. Our findings provide insight into the underlying pathophysiology of diverticulitis and may have implications for preventive strategies. See Video Abstract . ANTECEDENTES:La obesidad es un factor de riesgo de la diverticulitis. Sin embargo, sigue sin estar claro si el área de grasa visceral, con medida más precisa de la grasa abdominal esté asociada con el riesgo de diverticulitis.OBJETIVO:Estimar el riesgo de diverticulitis incidente y recurrente de acuerdo con el área de grasa visceral.DISEÑO:Un estudio de cohorte retrospectivo.AJUSTE:El Biobanco Mass General Brigham.PACIENTES:6.654 pacientes sometidos a una TC abdominal por indicaciones clínicas y sin diagnóstico de diverticulitis, enfermedad inflamatoria intestinal o cáncer antes de la exploración.PRINCIPALES MEDIDAS DE RESULTADOS:Se cuantificaron, área de grasa visceral, área de grasa subcutánea y área de músculo esquelético, utilizando un modelo de aprendizaje profundo aplicado a la TC abdominal. Las principales exposiciones fueron puntuaciones z de métricas de composición corporal, normalizadas por edad, sexo y raza. Los casos de diverticulitis se definieron con los códigos ICD para el diagnóstico primario o de admisión de los registros de salud electrónicos. Se estimaron los riesgos de diverticulitis incidente, diverticulitis complicada y diverticulitis recurrente que requiriera hospitalización según los cuartiles de las puntuaciones z de las métricas de composición corporal.RESULTADOS:Una puntuación z más alta del área de grasa visceral se asoció con un mayor riesgo de diverticulitis incidente (HR multivariable que compara el cuartil más alto con el más bajo, 2,09; IC del 95 %, 1,48-2,95; P para la tendencia < 0,0001), diverticulitis complicada (HR, 2,56; IC del 95 %, 1,10-5,99; P para la tendencia = 0,02) y recurrencia que requiriera hospitalización (HR, 2,76; IC del 95 %, 1,15-6,62; P para la tendencia = 0,03). La asociación entre el área de grasa visceral y la diverticulitis no fue materialmente diferente entre los diferentes estratos del índice de masa corporal. El área de grasa subcutánea y el área del músculo esquelético no se asociaron significativamente con la diverticulitis.LIMITACIONES:La población del estudio se limitó a individuos sometidos a tomografías computarizadas por indicación médica.CONCLUSIÓN:Una mayor área de grasa visceral derivada de la tomografía computarizada se asoció con diverticulitis incidente y recurrente. Nuestros hallazgos brindan información sobre la fisiopatología subyacente de la diverticulitis y pueden tener implicaciones para las estrategias preventivas. (Traducción: Dr. Fidel Ruiz Healy ).

Semi-supervised spatial-frequency transformer for metal artifact reduction in maxillofacial CT and evaluation with intraoral scan.

Li Y, Ma C, Li Z, Wang Z, Han J, Shan H, Liu J

pubmed logopapersJun 1 2025
To develop a semi-supervised domain adaptation technique for metal artifact reduction with a spatial-frequency transformer (SFTrans) model (Semi-SFTrans), and to quantitatively compare its performance with supervised models (Sup-SFTrans and ResUNet) and traditional linear interpolation MAR method (LI) in oral and maxillofacial CT. Supervised models, including Sup-SFTrans and a state-of-the-art model termed ResUNet, were trained with paired simulated CT images, while semi-supervised model, Semi-SFTrans, was trained with both paired simulated and unpaired clinical CT images. For evaluation on the simulated data, we calculated Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) on the images corrected by four methods: LI, ResUNet, Sup-SFTrans, and Semi-SFTrans. For evaluation on the clinical data, we collected twenty-two clinical cases with real metal artifacts, and the corresponding intraoral scan data. Three radiologists visually assessed the severity of artifacts using Likert scales on the original, Sup-SFTrans-corrected, and Semi-SFTrans-corrected images. Quantitative MAR evaluation was conducted by measuring Mean Hounsfield Unit (HU) values, standard deviations, and Signal-to-Noise Ratios (SNRs) across Regions of Interest (ROIs) such as the tongue, bilateral buccal, lips, and bilateral masseter muscles, using paired t-tests and Wilcoxon signed-rank tests. Further, teeth integrity in the corrected images was assessed by comparing teeth segmentation results from the corrected images against the ground-truth segmentation derived from registered intraoral scan data, using Dice Score and Hausdorff Distance. Sup-SFTrans outperformed LI, ResUNet and Semi-SFTrans on the simulated dataset. Visual assessments from the radiologists showed that average scores were (2.02 ± 0.91) for original CT, (4.46 ± 0.51) for Semi-SFTrans CT, and (3.64 ± 0.90) for Sup-SFTrans CT, with intra correlation coefficients (ICCs)>0.8 of all groups and p < 0.001 between groups. On soft tissue, both Semi-SFTrans and Sup-SFTrans significantly reduced metal artifacts in tongue (p < 0.001), lips, bilateral buccal regions, and masseter muscle areas (p < 0.05). Semi-SFTrans achieved superior metal artifact reduction than Sup-SFTrans in all ROIs (p < 0.001). SNR results indicated significant differences between Semi-SFTrans and Sup-SFTrans in tongue (p = 0.0391), bilateral buccal (p = 0.0067), lips (p = 0.0208), and bilateral masseter muscle areas (p = 0.0031). Notably, Semi-SFTrans demonstrated better teeth integrity preservation than Sup-SFTrans (Dice Score: p < 0.001; Hausdorff Distance: p = 0.0022). The semi-supervised MAR model, Semi-SFTrans, demonstrated superior metal artifact reduction performance over supervised counterparts in real dental CT images.
Page 116 of 1411403 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.