Sort by:
Page 11 of 14134 results

XDementNET: An Explainable Attention Based Deep Convolutional Network to Detect Alzheimer Progression from MRI data

Soyabul Islam Lincoln, Mirza Mohd Shahriar Maswood

arxiv logopreprintMay 20 2025
A common neurodegenerative disease, Alzheimer's disease requires a precise diagnosis and efficient treatment, particularly in light of escalating healthcare expenses and the expanding use of artificial intelligence in medical diagnostics. Many recent studies shows that the combination of brain Magnetic Resonance Imaging (MRI) and deep neural networks have achieved promising results for diagnosing AD. Using deep convolutional neural networks, this paper introduces a novel deep learning architecture that incorporates multiresidual blocks, specialized spatial attention blocks, grouped query attention, and multi-head attention. The study assessed the model's performance on four publicly accessible datasets and concentrated on identifying binary and multiclass issues across various categories. This paper also takes into account of the explainability of AD's progression and compared with state-of-the-art methods namely Gradient Class Activation Mapping (GradCAM), Score-CAM, Faster Score-CAM, and XGRADCAM. Our methodology consistently outperforms current approaches, achieving 99.66\% accuracy in 4-class classification, 99.63\% in 3-class classification, and 100\% in binary classification using Kaggle datasets. For Open Access Series of Imaging Studies (OASIS) datasets the accuracies are 99.92\%, 99.90\%, and 99.95\% respectively. The Alzheimer's Disease Neuroimaging Initiative-1 (ADNI-1) dataset was used for experiments in three planes (axial, sagittal, and coronal) and a combination of all planes. The study achieved accuracies of 99.08\% for axis, 99.85\% for sagittal, 99.5\% for coronal, and 99.17\% for all axis, and 97.79\% and 8.60\% respectively for ADNI-2. The network's ability to retrieve important information from MRI images is demonstrated by its excellent accuracy in categorizing AD stages.

NOVA: A Benchmark for Anomaly Localization and Clinical Reasoning in Brain MRI

Cosmin I. Bercea, Jun Li, Philipp Raffler, Evamaria O. Riedel, Lena Schmitzer, Angela Kurz, Felix Bitzer, Paula Roßmüller, Julian Canisius, Mirjam L. Beyrle, Che Liu, Wenjia Bai, Bernhard Kainz, Julia A. Schnabel, Benedikt Wiestler

arxiv logopreprintMay 20 2025
In many real-world applications, deployed models encounter inputs that differ from the data seen during training. Out-of-distribution detection identifies whether an input stems from an unseen distribution, while open-world recognition flags such inputs to ensure the system remains robust as ever-emerging, previously $unknown$ categories appear and must be addressed without retraining. Foundation and vision-language models are pre-trained on large and diverse datasets with the expectation of broad generalization across domains, including medical imaging. However, benchmarking these models on test sets with only a few common outlier types silently collapses the evaluation back to a closed-set problem, masking failures on rare or truly novel conditions encountered in clinical use. We therefore present $NOVA$, a challenging, real-life $evaluation-only$ benchmark of $\sim$900 brain MRI scans that span 281 rare pathologies and heterogeneous acquisition protocols. Each case includes rich clinical narratives and double-blinded expert bounding-box annotations. Together, these enable joint assessment of anomaly localisation, visual captioning, and diagnostic reasoning. Because NOVA is never used for training, it serves as an $extreme$ stress-test of out-of-distribution generalisation: models must bridge a distribution gap both in sample appearance and in semantic space. Baseline results with leading vision-language models (GPT-4o, Gemini 2.0 Flash, and Qwen2.5-VL-72B) reveal substantial performance drops across all tasks, establishing NOVA as a rigorous testbed for advancing models that can detect, localize, and reason about truly unknown anomalies.

Intelligent health model for medical imaging to guide laymen using neural cellular automata.

Sharma SK, Chowdhary CL, Sharma VS, Rasool A, Khan AA

pubmed logopapersMay 20 2025
A layman in health systems is a person who doesn't have any knowledge about health data i.e., X-ray, MRI, CT scan, and health examination reports, etc. The motivation behind the proposed invention is to help laymen to make medical images understandable. The health model is trained using a neural network approach that analyses user health examination data; predicts the type and level of the disease and advises precaution to the user. Cellular Automata (CA) technology has been integrated with the neural networks to segment the medical image. The CA analyzes the medical images pixel by pixel and generates a robust threshold value which helps to efficiently segment the image and identify accurate abnormal spots from the medical image. The proposed method has been trained and experimented using 10000+ medical images which are taken from various open datasets. Various text analysis measures i.e., BLEU, ROUGE, and WER are used in the research to validate the produced report. The BLEU and ROUGE calculate a similarity to decide how the generated text report is closer to the original report. The BLEU and ROUGE scores of the experimented images are approximately 0.62 and 0.90, claims that the produced report is very close to the original report. The WER score 0.14, claims that the generated report contains the most relevant words. The overall summary of the proposed research is that it provides a fruitful medical report with accurate disease and precautions to the laymen.

A Skull-Adaptive Framework for AI-Based 3D Transcranial Focused Ultrasound Simulation

Vinkle Srivastav, Juliette Puel, Jonathan Vappou, Elijah Van Houten, Paolo Cabras, Nicolas Padoy

arxiv logopreprintMay 19 2025
Transcranial focused ultrasound (tFUS) is an emerging modality for non-invasive brain stimulation and therapeutic intervention, offering millimeter-scale spatial precision and the ability to target deep brain structures. However, the heterogeneous and anisotropic nature of the human skull introduces significant distortions to the propagating ultrasound wavefront, which require time-consuming patient-specific planning and corrections using numerical solvers for accurate targeting. To enable data-driven approaches in this domain, we introduce TFUScapes, the first large-scale, high-resolution dataset of tFUS simulations through anatomically realistic human skulls derived from T1-weighted MRI images. We have developed a scalable simulation engine pipeline using the k-Wave pseudo-spectral solver, where each simulation returns a steady-state pressure field generated by a focused ultrasound transducer placed at realistic scalp locations. In addition to the dataset, we present DeepTFUS, a deep learning model that estimates normalized pressure fields directly from input 3D CT volumes and transducer position. The model extends a U-Net backbone with transducer-aware conditioning, incorporating Fourier-encoded position embeddings and MLP layers to create global transducer embeddings. These embeddings are fused with U-Net encoder features via feature-wise modulation, dynamic convolutions, and cross-attention mechanisms. The model is trained using a combination of spatially weighted and gradient-sensitive loss functions, enabling it to approximate high-fidelity wavefields. The TFUScapes dataset is publicly released to accelerate research at the intersection of computational acoustics, neurotechnology, and deep learning. The project page is available at https://github.com/CAMMA-public/TFUScapes.

OpenPros: A Large-Scale Dataset for Limited View Prostate Ultrasound Computed Tomography

Hanchen Wang, Yixuan Wu, Yinan Feng, Peng Jin, Shihang Feng, Yiming Mao, James Wiskin, Baris Turkbey, Peter A. Pinto, Bradford J. Wood, Songting Luo, Yinpeng Chen, Emad Boctor, Youzuo Lin

arxiv logopreprintMay 18 2025
Prostate cancer is one of the most common and lethal cancers among men, making its early detection critically important. Although ultrasound imaging offers greater accessibility and cost-effectiveness compared to MRI, traditional transrectal ultrasound methods suffer from low sensitivity, especially in detecting anteriorly located tumors. Ultrasound computed tomography provides quantitative tissue characterization, but its clinical implementation faces significant challenges, particularly under anatomically constrained limited-angle acquisition conditions specific to prostate imaging. To address these unmet needs, we introduce OpenPros, the first large-scale benchmark dataset explicitly developed for limited-view prostate USCT. Our dataset includes over 280,000 paired samples of realistic 2D speed-of-sound (SOS) phantoms and corresponding ultrasound full-waveform data, generated from anatomically accurate 3D digital prostate models derived from real clinical MRI/CT scans and ex vivo ultrasound measurements, annotated by medical experts. Simulations are conducted under clinically realistic configurations using advanced finite-difference time-domain and Runge-Kutta acoustic wave solvers, both provided as open-source components. Through comprehensive baseline experiments, we demonstrate that state-of-the-art deep learning methods surpass traditional physics-based approaches in both inference efficiency and reconstruction accuracy. Nevertheless, current deep learning models still fall short of delivering clinically acceptable high-resolution images with sufficient accuracy. By publicly releasing OpenPros, we aim to encourage the development of advanced machine learning algorithms capable of bridging this performance gap and producing clinically usable, high-resolution, and highly accurate prostate ultrasound images. The dataset is publicly accessible at https://open-pros.github.io/.

SMFusion: Semantic-Preserving Fusion of Multimodal Medical Images for Enhanced Clinical Diagnosis

Haozhe Xiang, Han Zhang, Yu Cheng, Xiongwen Quan, Wanwan Huang

arxiv logopreprintMay 18 2025
Multimodal medical image fusion plays a crucial role in medical diagnosis by integrating complementary information from different modalities to enhance image readability and clinical applicability. However, existing methods mainly follow computer vision standards for feature extraction and fusion strategy formulation, overlooking the rich semantic information inherent in medical images. To address this limitation, we propose a novel semantic-guided medical image fusion approach that, for the first time, incorporates medical prior knowledge into the fusion process. Specifically, we construct a publicly available multimodal medical image-text dataset, upon which text descriptions generated by BiomedGPT are encoded and semantically aligned with image features in a high-dimensional space via a semantic interaction alignment module. During this process, a cross attention based linear transformation automatically maps the relationship between textual and visual features to facilitate comprehensive learning. The aligned features are then embedded into a text-injection module for further feature-level fusion. Unlike traditional methods, we further generate diagnostic reports from the fused images to assess the preservation of medical information. Additionally, we design a medical semantic loss function to enhance the retention of textual cues from the source images. Experimental results on test datasets demonstrate that the proposed method achieves superior performance in both qualitative and quantitative evaluations while preserving more critical medical information.

MedAgentBoard: Benchmarking Multi-Agent Collaboration with Conventional Methods for Diverse Medical Tasks

Yinghao Zhu, Ziyi He, Haoran Hu, Xiaochen Zheng, Xichen Zhang, Zixiang Wang, Junyi Gao, Liantao Ma, Lequan Yu

arxiv logopreprintMay 18 2025
The rapid advancement of Large Language Models (LLMs) has stimulated interest in multi-agent collaboration for addressing complex medical tasks. However, the practical advantages of multi-agent collaboration approaches remain insufficiently understood. Existing evaluations often lack generalizability, failing to cover diverse tasks reflective of real-world clinical practice, and frequently omit rigorous comparisons against both single-LLM-based and established conventional methods. To address this critical gap, we introduce MedAgentBoard, a comprehensive benchmark for the systematic evaluation of multi-agent collaboration, single-LLM, and conventional approaches. MedAgentBoard encompasses four diverse medical task categories: (1) medical (visual) question answering, (2) lay summary generation, (3) structured Electronic Health Record (EHR) predictive modeling, and (4) clinical workflow automation, across text, medical images, and structured EHR data. Our extensive experiments reveal a nuanced landscape: while multi-agent collaboration demonstrates benefits in specific scenarios, such as enhancing task completeness in clinical workflow automation, it does not consistently outperform advanced single LLMs (e.g., in textual medical QA) or, critically, specialized conventional methods that generally maintain better performance in tasks like medical VQA and EHR-based prediction. MedAgentBoard offers a vital resource and actionable insights, emphasizing the necessity of a task-specific, evidence-based approach to selecting and developing AI solutions in medicine. It underscores that the inherent complexity and overhead of multi-agent collaboration must be carefully weighed against tangible performance gains. All code, datasets, detailed prompts, and experimental results are open-sourced at https://medagentboard.netlify.app/.

A self-supervised multimodal deep learning approach to differentiate post-radiotherapy progression from pseudoprogression in glioblastoma.

Gomaa A, Huang Y, Stephan P, Breininger K, Frey B, Dörfler A, Schnell O, Delev D, Coras R, Donaubauer AJ, Schmitter C, Stritzelberger J, Semrau S, Maier A, Bayer S, Schönecker S, Heiland DH, Hau P, Gaipl US, Bert C, Fietkau R, Schmidt MA, Putz F

pubmed logopapersMay 17 2025
Accurate differentiation of pseudoprogression (PsP) from True Progression (TP) following radiotherapy (RT) in glioblastoma patients is crucial for optimal treatment planning. However, this task remains challenging due to the overlapping imaging characteristics of PsP and TP. This study therefore proposes a multimodal deep-learning approach utilizing complementary information from routine anatomical MR images, clinical parameters, and RT treatment planning information for improved predictive accuracy. The approach utilizes a self-supervised Vision Transformer (ViT) to encode multi-sequence MR brain volumes to effectively capture both global and local context from the high dimensional input. The encoder is trained in a self-supervised upstream task on unlabeled glioma MRI datasets from the open BraTS2021, UPenn-GBM, and UCSF-PDGM datasets (n = 2317 MRI studies) to generate compact, clinically relevant representations from FLAIR and T1 post-contrast sequences. These encoded MR inputs are then integrated with clinical data and RT treatment planning information through guided cross-modal attention, improving progression classification accuracy. This work was developed using two datasets from different centers: the Burdenko Glioblastoma Progression Dataset (n = 59) for training and validation, and the GlioCMV progression dataset from the University Hospital Erlangen (UKER) (n = 20) for testing. The proposed method achieved competitive performance, with an AUC of 75.3%, outperforming the current state-of-the-art data-driven approaches. Importantly, the proposed approach relies solely on readily available anatomical MRI sequences, clinical data, and RT treatment planning information, enhancing its clinical feasibility. The proposed approach addresses the challenge of limited data availability for PsP and TP differentiation and could allow for improved clinical decision-making and optimized treatment plans for glioblastoma patients.

MedSG-Bench: A Benchmark for Medical Image Sequences Grounding

Jingkun Yue, Siqi Zhang, Zinan Jia, Huihuan Xu, Zongbo Han, Xiaohong Liu, Guangyu Wang

arxiv logopreprintMay 17 2025
Visual grounding is essential for precise perception and reasoning in multimodal large language models (MLLMs), especially in medical imaging domains. While existing medical visual grounding benchmarks primarily focus on single-image scenarios, real-world clinical applications often involve sequential images, where accurate lesion localization across different modalities and temporal tracking of disease progression (e.g., pre- vs. post-treatment comparison) require fine-grained cross-image semantic alignment and context-aware reasoning. To remedy the underrepresentation of image sequences in existing medical visual grounding benchmarks, we propose MedSG-Bench, the first benchmark tailored for Medical Image Sequences Grounding. It comprises eight VQA-style tasks, formulated into two paradigms of the grounding tasks, including 1) Image Difference Grounding, which focuses on detecting change regions across images, and 2) Image Consistency Grounding, which emphasizes detection of consistent or shared semantics across sequential images. MedSG-Bench covers 76 public datasets, 10 medical imaging modalities, and a wide spectrum of anatomical structures and diseases, totaling 9,630 question-answer pairs. We benchmark both general-purpose MLLMs (e.g., Qwen2.5-VL) and medical-domain specialized MLLMs (e.g., HuatuoGPT-vision), observing that even the advanced models exhibit substantial limitations in medical sequential grounding tasks. To advance this field, we construct MedSG-188K, a large-scale instruction-tuning dataset tailored for sequential visual grounding, and further develop MedSeq-Grounder, an MLLM designed to facilitate future research on fine-grained understanding across medical sequential images. The benchmark, dataset, and model are available at https://huggingface.co/MedSG-Bench

CorBenchX: Large-Scale Chest X-Ray Error Dataset and Vision-Language Model Benchmark for Report Error Correction

Jing Zou, Qingqiu Li, Chenyu Lian, Lihao Liu, Xiaohan Yan, Shujun Wang, Jing Qin

arxiv logopreprintMay 17 2025
AI-driven models have shown great promise in detecting errors in radiology reports, yet the field lacks a unified benchmark for rigorous evaluation of error detection and further correction. To address this gap, we introduce CorBenchX, a comprehensive suite for automated error detection and correction in chest X-ray reports, designed to advance AI-assisted quality control in clinical practice. We first synthesize a large-scale dataset of 26,326 chest X-ray error reports by injecting clinically common errors via prompting DeepSeek-R1, with each corrupted report paired with its original text, error type, and human-readable description. Leveraging this dataset, we benchmark both open- and closed-source vision-language models,(e.g., InternVL, Qwen-VL, GPT-4o, o4-mini, and Claude-3.7) for error detection and correction under zero-shot prompting. Among these models, o4-mini achieves the best performance, with 50.6 % detection accuracy and correction scores of BLEU 0.853, ROUGE 0.924, BERTScore 0.981, SembScore 0.865, and CheXbertF1 0.954, remaining below clinical-level accuracy, highlighting the challenge of precise report correction. To advance the state of the art, we propose a multi-step reinforcement learning (MSRL) framework that optimizes a multi-objective reward combining format compliance, error-type accuracy, and BLEU similarity. We apply MSRL to QwenVL2.5-7B, the top open-source model in our benchmark, achieving an improvement of 38.3% in single-error detection precision and 5.2% in single-error correction over the zero-shot baseline.
Page 11 of 14134 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.