Sort by:
Page 108 of 1521519 results

Patent Analysis of Dental CBCT Machines.

Yeung AWK, Nalley A, Hung KF, Oenning AC, Tanaka R

pubmed logopapersJun 1 2025
Cone Beam Computed Tomography (CBCT) has become a crucial imaging tool in modern dentistry. At present, a review does not exist to provide comprehensive understanding of the technological advancements and the entities driving the innovations of CBCT. This study aimed to analyse the patent records associated with CBCT technology, to gain valuable insights into the trends and breakthroughs, and identify key areas of focus from manufacturers. The online patent database called The Lens was accessed on 3 January 2025 to identify relevant patent records. A total of 706 patent records were identified and analysed. The majority of over 700 CBCT patents was contributed by CBCT manufacturers. The United States was the jurisdiction with most patent records, followed by Europe and China. Some manufacturers hold patent records for common features of CBCT systems, such as motion artifact correction, metal artifact reduction, reconstruction of panoramic image based on 3D data, and incorporation of artificial intelligence. Patent analysis can offer valuable insights into the development and advancement of CBCT technology, and foster collaboration between manufacturers, researchers, and clinicians. The advancements in CBCT technology, as reflected by patent trends, enhance diagnostic accuracy and treatment planning. Understanding these technological innovations can aid clinicians in selecting the most effective imaging tools for patient care.

PET and CT based DenseNet outperforms advanced deep learning models for outcome prediction of oropharyngeal cancer.

Ma B, Guo J, Dijk LVV, Langendijk JA, Ooijen PMAV, Both S, Sijtsema NM

pubmed logopapersJun 1 2025
In the HECKTOR 2022 challenge set [1], several state-of-the-art (SOTA, achieving best performance) deep learning models were introduced for predicting recurrence-free period (RFP) in head and neck cancer patients using PET and CT images. This study investigates whether a conventional DenseNet architecture, with optimized numbers of layers and image-fusion strategies, could achieve comparable performance as SOTA models. The HECKTOR 2022 dataset comprises 489 oropharyngeal cancer (OPC) patients from seven distinct centers. It was randomly divided into a training set (n = 369) and an independent test set (n = 120). Furthermore, an additional dataset of 400 OPC patients, who underwent chemo(radiotherapy) at our center, was employed for external testing. Each patients' data included pre-treatment CT- and PET-scans, manually generated GTV (Gross tumour volume) contours for primary tumors and lymph nodes, and RFP information. The present study compared the performance of DenseNet against three SOTA models developed on the HECKTOR 2022 dataset. When inputting CT, PET and GTV using the early fusion (considering them as different channels of input) approach, DenseNet81 (with 81 layers) obtained an internal test C-index of 0.69, a performance metric comparable with SOTA models. Notably, the removal of GTV from the input data yielded the same internal test C-index of 0.69 while improving the external test C-index from 0.59 to 0.63. Furthermore, compared to PET-only models, when utilizing the late fusion (concatenation of extracted features) with CT and PET, DenseNet81 demonstrated superior C-index values of 0.68 and 0.66 in both internal and external test sets, while using early fusion was better in only the internal test set. The basic DenseNet architecture with 81 layers demonstrated a predictive performance on par with SOTA models featuring more intricate architectures in the internal test set, and better performance in the external test. The late fusion of CT and PET imaging data yielded superior performance in the external test.

Beyond traditional orthopaedic data analysis: AI, multimodal models and continuous monitoring.

Oettl FC, Zsidai B, Oeding JF, Hirschmann MT, Feldt R, Tischer T, Samuelsson K

pubmed logopapersJun 1 2025
Multimodal artificial intelligence (AI) has the potential to revolutionise healthcare by enabling the simultaneous processing and integration of various data types, including medical imaging, electronic health records, genomic information and real-time data. This review explores the current applications and future potential of multimodal AI across healthcare, with a particular focus on orthopaedic surgery. In presurgical planning, multimodal AI has demonstrated significant improvements in diagnostic accuracy and risk prediction, with studies reporting an Area under the receiving operator curve presenting good to excellent performance across various orthopaedic conditions. Intraoperative applications leverage advanced imaging and tracking technologies to enhance surgical precision, while postoperative care has been advanced through continuous patient monitoring and early detection of complications. Despite these advances, significant challenges remain in data integration, standardisation, and privacy protection. Technical solutions such as federated learning (allowing decentralisation of models) and edge computing (allowing data analysis to happen on site or closer to site instead of multipurpose datacenters) are being developed to address these concerns while maintaining compliance with regulatory frameworks. As this field continues to evolve, the integration of multimodal AI promises to advance personalised medicine, improve patient outcomes, and transform healthcare delivery through more comprehensive and nuanced analysis of patient data. Level of Evidence: Level V.

Estimating patient-specific organ doses from head and abdominal CT scans via machine learning with optimized regulation strength and feature quantity.

Shao W, Qu L, Lin X, Yun W, Huang Y, Zhuo W, Liu H

pubmed logopapersJun 1 2025
This study aims to investigate estimation of patient-specific organ doses from CT scans via radiomics feature-based SVR models with training parameter optimization, and maximize SVR models' predictive accuracy and robustness via fine-tuning regularization parameter and input feature quantities. CT images from head and abdominal scans underwent processing using DeepViewer®, an auto-segmentation tool for defining regions of interest (ROIs) of their organs. Radiomics features were extracted from the CT data and ROIs. Benchmark organ doses were then calculated through Monte Carlo (MC) simulations. SVR models, utilizing these extracted radiomics features as inputs for model training, were employed to predict patient-specific organ doses from CT scans. The trained SVR models underwent optimization by adjusting parameters for the input radiomics feature quantity and regulation parameter, resulting in appropriate configurations for accurate patient-specific organ dose predictions. The C values of 5 and 10 have made the SVR models arrive at a saturation state for the head and abdominal organs. The SVR models' MAPE and R<sup>2</sup> strongly depend on organ types. The appropriate parameters respectively are C = 5 or 10 coupled with input feature quantities of 50 for the brain and 200 for the left eye, right eye, left lens, and right lens. the appropriate parameters would be C = 5 or 10 accompanying input feature quantities of 80 for the bowel, 50 for the left kidney, right kidney, and 100 for the liver. Performance optimization of selecting appropriate combinations of input feature quantity and regulation parameters can maximize the predictive accuracy and robustness of radiomics feature-based SVR models in the realm of patient-specific organ dose predictions from CT scans.

CT-derived fractional flow reserve on therapeutic management and outcomes compared with coronary CT angiography in coronary artery disease.

Qian Y, Chen M, Hu C, Wang X

pubmed logopapersJun 1 2025
To determine the value of on-site deep learning-based CT-derived fractional flow reserve (CT-FFR) for therapeutic management and adverse clinical outcomes in patients suspected of coronary artery disease (CAD) compared with coronary CT angiography (CCTA) alone. This single-centre prospective study included consecutive patients suspected of CAD between June 2021 and September 2021 at our hospital. Four hundred and sixty-one patients were randomized into either CT-FFR+CCTA or CCTA-alone group. The first endpoint was the invasive coronary angiography (ICA) efficiency, defined as the ICA with nonobstructive disease (stenosis <50%) and the ratio of revascularization to ICA (REV-to-ICA ratio) within 90 days. The second endpoint was the incidence of major adverse cardiaovascular events (MACE) at 2 years. A total of 461 patients (267 [57.9%] men; median age, 64 [55-69]) were included. At 90 days, the rate of ICA with nonobstructive disease in the CT-FFR+CCTA group was lower than in the CCTA group (14.7% vs 34.0%, P=.047). The REV-to-ICA ratio in the CT-FFR+CCTA group was significantly higher than in the CCTA group (73.5% vs. 50.9%, P=.036). No significant difference in ICA efficiency was found in intermediate stenosis (25%-69%) between the 2 groups (all P>.05). After a median follow-up of 23 (22-24) months, MACE were observed in 11 patients in the CT-FFR+CCTA group and 24 in the CCTA group (5.9% vs 10.0%, P=.095). The on-site deep learning-based CT-FFR improved the efficiency of ICA utilization with a similarly low rate of MACE compared with CCTA alone. The on-site deep learning-based CT-FFR was superior to CCTA for therapeutic management.

Optimized attention-enhanced U-Net for autism detection and region localization in MRI.

K VRP, Bindu CH, Rama Devi K

pubmed logopapersJun 1 2025
Autism spectrum disorder (ASD) is a neurodevelopmental condition that affects a child's cognitive and social skills, often diagnosed only after symptoms appear around age 2. Leveraging MRI for early ASD detection can improve intervention outcomes. This study proposes a framework for autism detection and region localization using an optimized deep learning approach with attention mechanisms. The pipeline includes MRI image collection, pre-processing (bias field correction, histogram equalization, artifact removal, and non-local mean filtering), and autism classification with a Symmetric Structured MobileNet with Attention Mechanism (SSM-AM). Enhanced by Refreshing Awareness-aided Election-Based Optimization (RA-EBO), SSM-AM achieves robust classification. Abnormality region localization utilizes a Multiscale Dilated Attention-based Adaptive U-Net (MDA-AUnet) further optimized by RA-EBO. Experimental results demonstrate that our proposed model outperforms existing methods, achieving an accuracy of 97.29%, sensitivity of 97.27%, specificity of 97.36%, and precision of 98.98%, significantly improving classification and localization performance. These results highlight the potential of our approach for early ASD diagnosis and targeted interventions. The datasets utilized for this work are publicly available at https://fcon_1000.projects.nitrc.org/indi/abide/.

Polygenic risk scores for rheumatoid arthritis and idiopathic pulmonary fibrosis and associations with RA, interstitial lung abnormalities, and quantitative interstitial abnormalities among smokers.

McDermott GC, Moll M, Cho MH, Hayashi K, Juge PA, Doyle TJ, Paudel ML, Kinney GL, Kronzer VL, Kim JS, O'Keeffe LA, Davis NA, Bernstein EJ, Dellaripa PF, Regan EA, Hunninghake GM, Silverman EK, Ash SY, San Jose Estepar R, Washko GR, Sparks JA

pubmed logopapersJun 1 2025
Genome-wide association studies (GWAS) facilitate construction of polygenic risk scores (PRSs) for rheumatoid arthritis (RA) and idiopathic pulmonary fibrosis (IPF). We investigated associations of RA and IPF PRSs with RA and high-resolution chest computed tomography (HRCT) parenchymal lung abnormalities. Participants in COPDGene, a prospective multicenter cohort of current/former smokers, had chest HRCT at study enrollment. Using genome-wide genotyping, RA and IPF PRSs were constructed using GWAS summary statistics. HRCT imaging underwent visual inspection for interstitial lung abnormalities (ILA) and quantitative CT (QCT) analysis using a machine-learning algorithm that quantified percentage of normal lung, interstitial abnormalities, and emphysema. RA was identified through self-report and DMARD use. We investigated associations of RA and IPF PRSs with RA, ILA, and QCT features using multivariable logistic and linear regression. We analyzed 9,230 COPDGene participants (mean age 59.6 years, 46.4 % female, 67.2 % non-Hispanic White, 32.8 % Black/African American). In non-Hispanic White participants, RA PRS was associated with RA diagnosis (OR 1.32 per unit, 95 %CI 1.18-1.49) but not ILA or QCT features. Among non-Hispanic White participants, IPF PRS was associated with ILA (OR 1.88 per unit, 95 %CI 1.52-2.32) and quantitative interstitial abnormalities (adjusted β=+0.50 % per unit, p = 7.3 × 10<sup>-8</sup>) but not RA. There were no statistically significant associations among Black/African American participants. RA and IPF PRSs were associated with their intended phenotypes among non-Hispanic White participants but performed poorly among Black/African American participants. PRS may have future application to risk stratify for RA diagnosis among patients with ILD or for ILD among patients with RA.

Standardized pancreatic MRI-T1 measurement methods: comparison between manual measurement and a semi-automated pipeline with automatic quality control.

Triay Bagur A, Arya Z, Waddell T, Pansini M, Fernandes C, Counter D, Jackson E, Thomaides-Brears HB, Robson MD, Bulte DP, Banerjee R, Aljabar P, Brady M

pubmed logopapersJun 1 2025
Scanner-referenced T1 (srT1) is a method for measuring pancreas T1 relaxation time. The purpose of this multi-centre study is 2-fold: (1) to evaluate the repeatability of manual ROI-based analysis of srT1, (2) to validate a semi-automated measurement method with an automatic quality control (QC) module to identify likely discrepancies between automated and manual measurements. Pancreatic MRI scans from a scan-rescan cohort (46 subjects) were used to evaluate the repeatability of manual analysis. Seven hundred and eight scans from a longitudinal multi-centre study of 466 subjects were divided into training, internal validation (IV), and external validation (EV) cohorts. A semi-automated method for measuring srT1 using machine learning is proposed and compared against manual analysis on the validation cohorts with and without automated QC. Inter-operator agreement between manual ROI-based method and semi-automated method had low bias (3.8 ms or 0.5%) and limits of agreement [-36.6, 44.1] ms. There was good agreement between the 2 methods without automated QC (IV: 3.2 [-47.1, 53.5] ms, EV: -0.5 [-35.2, 34.2] ms). After QC, agreement on the IV set improved, was unchanged in the EV set, and the agreement in both was within inter-operator bounds (IV: -0.04 [-33.4, 33.3] ms, EV: -1.9 [-37.6, 33.7] ms). The semi-automated method improved scan-rescan agreement versus manual analysis (manual: 8.2 [-49.7, 66] ms, automated: 6.7 [-46.7, 60.1] ms). The semi-automated method for characterization of standardized pancreatic T1 using MRI has the potential to decrease analysis time while maintaining accuracy and improving scan-rescan agreement. We provide intra-operator, inter-operator, and scan-rescan agreement values for manual measurement of srT1, a standardized biomarker for measuring pancreas fibro-inflammation. Applying a semi-automated measurement method improves scan-rescan agreement and agrees well with manual measurements, while reducing human effort. Adding automated QC can improve agreement between manual and automated measurements. We describe a method for semi-automated, standardized measurement of pancreatic T1 (srT1), which includes automated quality control. Measurements show good agreement with manual ROI-based analysis, with comparable consistency to inter-operator performance.

American College of Veterinary Radiology and European College of Veterinary Diagnostic Imaging position statement on artificial intelligence.

Appleby RB, Difazio M, Cassel N, Hennessey R, Basran PS

pubmed logopapersJun 1 2025
The American College of Veterinary Radiology (ACVR) and the European College of Veterinary Diagnostic Imaging (ECVDI) recognize the transformative potential of AI in veterinary diagnostic imaging and radiation oncology. This position statement outlines the guiding principles for the ethical development and integration of AI technologies to ensure patient safety and clinical effectiveness. Artificial intelligence systems must adhere to good machine learning practices, emphasizing transparency, error reporting, and the involvement of clinical experts throughout development. These tools should also include robust mechanisms for secure patient data handling and postimplementation monitoring. The position highlights the critical importance of maintaining a veterinarian in the loop, preferably a board-certified radiologist or radiation oncologist, to interpret AI outputs and safeguard diagnostic quality. Currently, no commercially available AI products for veterinary diagnostic imaging meet the required standards for transparency, validation, or safety. The ACVR and ECVDI advocate for rigorous peer-reviewed research, unbiased third-party evaluations, and interdisciplinary collaboration to establish evidence-based benchmarks for AI applications. Additionally, the statement calls for enhanced education on AI for veterinary professionals, from foundational training in curricula to continuing education for practitioners. Veterinarians are encouraged to disclose AI usage to pet owners and provide alternative diagnostic options as needed. Regulatory bodies should establish guidelines to prevent misuse and protect the profession and patients. The ACVR and ECVDI stress the need for a cautious, informed approach to AI adoption, ensuring these technologies augment, rather than compromise, veterinary care.

Prediction of lymph node metastasis in papillary thyroid carcinoma using non-contrast CT-based radiomics and deep learning with thyroid lobe segmentation: A dual-center study.

Wang H, Wang X, Du Y, Wang Y, Bai Z, Wu D, Tang W, Zeng H, Tao J, He J

pubmed logopapersJun 1 2025
This study aimed to develop a predictive model for lymph node metastasis (LNM) in papillary thyroid carcinoma (PTC) patients by deep learning radiomic (DLRad) and clinical features. This study included 271 thyroid lobes from 228 PTC patients who underwent preoperative neck non-contrast CT at Center 1 (May 2021-April 2024). LNM status was confirmed via postoperative pathology, with each thyroid lobe labeled accordingly. The cohort was divided into training (n = 189) and validation (n = 82) cohorts, with additional temporal (n = 59 lobes, Center 1, May-August 2024) and external (n = 66 lobes, Center 2) test cohorts. Thyroid lobes were manually segmented from the isthmus midline, ensuring interobserver consistency (ICC ≥ 0.8). Deep learning and radiomics features were selected using LASSO algorithms to compute DLRad scores. Logistic regression identified independent predictors, forming DLRad, clinical, and combined models. Model performance was evaluated using AUC, calibration, decision curves, and the DeLong test, compared against radiologists' assessments. Independent predictors of LNM included age, gender, multiple nodules, tumor size group, and DLRad. The combined model demonstrated superior diagnostic performance with AUCs of 0.830 (training), 0.799 (validation), 0.819 (temporal test), and 0.756 (external test), outperforming the DLRad model (AUCs: 0.786, 0.730, 0.753, 0.642), clinical model (AUCs: 0.723, 0.745, 0.671, 0.660), and radiologist evaluations (AUCs: 0.529, 0.606, 0.620, 0.503). It also achieved the lowest Brier scores (0.167, 0.184, 0.175, 0.201) and the highest net benefit in decision-curve analysis at threshold probabilities > 20 %. The combined model integrating DLRad and clinical features exhibits good performance in predicting LNM in PTC patients.
Page 108 of 1521519 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.