Sort by:
Page 101 of 1261251 results

Exploring the significance of the frontal lobe for diagnosis of schizophrenia using explainable artificial intelligence and group level analysis.

Varaprasad SA, Goel T

pubmed logopapersJun 1 2025
Schizophrenia (SZ) is a complex mental disorder characterized by a profound disruption in cognition and emotion, often resulting in a distorted perception of reality. Magnetic resonance imaging (MRI) is an essential tool for diagnosing SZ which helps to understand the organization of the brain. Functional MRI (fMRI) is a specialized imaging technique to measure and map brain activity by detecting changes in blood flow and oxygenation. The proposed paper correlates the results using an explainable deep learning approach to identify the significant regions of SZ patients using group-level analysis for both structural MRI (sMRI) and fMRI data. The study found that the heat maps for Grad-CAM show clear visualization in the frontal lobe for the classification of SZ and CN with a 97.33% accuracy. The group difference analysis reveals that sMRI data shows intense voxel activity in the right superior frontal gyrus of the frontal lobe in SZ patients. Also, the group difference between SZ and CN during n-back tasks of fMRI data indicates significant voxel activation in the frontal cortex of the frontal lobe. These findings suggest that the frontal lobe plays a crucial role in the diagnosis of SZ, aiding clinicians in planning the treatment.

Optimized attention-enhanced U-Net for autism detection and region localization in MRI.

K VRP, Bindu CH, Rama Devi K

pubmed logopapersJun 1 2025
Autism spectrum disorder (ASD) is a neurodevelopmental condition that affects a child's cognitive and social skills, often diagnosed only after symptoms appear around age 2. Leveraging MRI for early ASD detection can improve intervention outcomes. This study proposes a framework for autism detection and region localization using an optimized deep learning approach with attention mechanisms. The pipeline includes MRI image collection, pre-processing (bias field correction, histogram equalization, artifact removal, and non-local mean filtering), and autism classification with a Symmetric Structured MobileNet with Attention Mechanism (SSM-AM). Enhanced by Refreshing Awareness-aided Election-Based Optimization (RA-EBO), SSM-AM achieves robust classification. Abnormality region localization utilizes a Multiscale Dilated Attention-based Adaptive U-Net (MDA-AUnet) further optimized by RA-EBO. Experimental results demonstrate that our proposed model outperforms existing methods, achieving an accuracy of 97.29%, sensitivity of 97.27%, specificity of 97.36%, and precision of 98.98%, significantly improving classification and localization performance. These results highlight the potential of our approach for early ASD diagnosis and targeted interventions. The datasets utilized for this work are publicly available at https://fcon_1000.projects.nitrc.org/indi/abide/.

Brain tumor segmentation with deep learning: Current approaches and future perspectives.

Verma A, Yadav AK

pubmed logopapersJun 1 2025
Accurate brain tumor segmentation from MRI images is critical in the medical industry, directly impacts the efficacy of diagnostic and treatment plans. Accurate segmentation of tumor region can be challenging, especially when noise and abnormalities are present. This research provides a systematic review of automatic brain tumor segmentation techniques, with a specific focus on the design of network architectures. The review categorizes existing methods into unsupervised and supervised learning techniques, as well as machine learning and deep learning approaches within supervised techniques. Deep learning techniques are thoroughly reviewed, with a particular focus on CNN-based, U-Net-based, transfer learning-based, transformer-based, and hybrid transformer-based methods. This survey encompasses a broad spectrum of automatic segmentation methodologies, from traditional machine learning approaches to advanced deep learning frameworks. It provides an in-depth comparison of performance metrics, model efficiency, and robustness across multiple datasets, particularly the BraTS dataset. The study further examines multi-modal MRI imaging and its influence on segmentation accuracy, addressing domain adaptation, class imbalance, and generalization challenges. The analysis highlights the current challenges in Computer-aided Diagnostic (CAD) systems, examining how different models and imaging sequences impact performance. Recent advancements in deep learning, especially the widespread use of U-Net architectures, have significantly enhanced medical image segmentation. This review critically evaluates these developments, focusing the iterative improvements in U-Net models that have driven progress in brain tumor segmentation. Furthermore, it explores various techniques for improving U-Net performance for medical applications, focussing on its potential for improving diagnostic and treatment planning procedures. The efficiency of these automated segmentation approaches is rigorously evaluated using the BraTS dataset, a benchmark dataset, part of the annual Multimodal Brain Tumor Segmentation Challenge (MICCAI). This evaluation provides insights into the current state-of-the-art and identifies key areas for future research and development.

Brain Age Gap Associations with Body Composition and Metabolic Indices in an Asian Cohort: An MRI-Based Study.

Lee HJ, Kuo CY, Tsao YC, Lee PL, Chou KH, Lin CJ, Lin CP

pubmed logopapersJun 1 2025
Global aging raises concerns about cognitive health, metabolic disorders, and sarcopenia. Prevention of reversible decline and diseases in middle-aged individuals is essential for promoting healthy aging. We hypothesize that changes in body composition, specifically muscle mass and visceral fat, and metabolic indices are associated with accelerated brain aging. To explore these relationships, we employed a brain age model to investigate the links between the brain age gap (BAG), body composition, and metabolic markers. Using T1-weighted anatomical brain MRIs, we developed a machine learning model to predict brain age from gray matter features, trained on 2,675 healthy individuals aged 18-92 years. This model was then applied to a separate cohort of 458 Taiwanese adults (57.8 years ± 11.6; 280 men) to assess associations between BAG, body composition quantified by MRI, and metabolic markers. Our model demonstrated reliable generalizability for predicting individual age in the clinical dataset (MAE = 6.11 years, r = 0.900). Key findings included significant correlations between larger BAG and reduced total abdominal muscle area (r = -0.146, p = 0.018), lower BMI-adjusted skeletal muscle indices, (r = -0.134, p = 0.030), increased systemic inflammation, as indicated by high-sensitivity C-reactive protein levels (r = 0.121, p = 0.048), and elevated fasting glucose levels (r = 0.149, p = 0.020). Our findings confirm that muscle mass and metabolic health decline are associated with accelerated brain aging. Interventions to improve muscle health and metabolic control may mitigate adverse effects of brain aging, supporting healthier aging trajectories.

Focal cortical dysplasia detection by artificial intelligence using MRI: A systematic review and meta-analysis.

Dashtkoohi M, Ghadimi DJ, Moodi F, Behrang N, Khormali E, Salari HM, Cohen NT, Gholipour T, Saligheh Rad H

pubmed logopapersJun 1 2025
Focal cortical dysplasia (FCD) is a common cause of pharmacoresistant epilepsy. However, it can be challenging to detect FCD using MRI alone. This study aimed to review and analyze studies that used machine learning and artificial neural networks (ANN) methods as an additional tool to enhance MRI findings in FCD patients. A systematic search was conducted in four databases (Embase, PubMed, Scopus, and Web of Science). The quality of the studies was assessed using QUADAS-AI, and a bivariate random-effects model was used for analysis. The main outcome analyzed was the sensitivity and specificity of patient-wise outcomes. Heterogeneity among studies was assessed using I<sup>2</sup>. A total of 41 studies met the inclusion criteria, including 24 ANN-based studies and 17 machine learning studies. Meta-analysis of internal validation datasets showed a pooled sensitivity of 0.81 and specificity of 0.92 for AI-based models in detecting FCD lesions. Meta-analysis of external validation datasets yielded a pooled sensitivity of 0.73 and specificity of 0.66. There was moderate heterogeneity among studies in the external validation dataset, but no significant publication bias was found. Although there is an increasing number of machine learning and ANN-based models for FCD detection, their clinical applicability remains limited. Further refinement and optimization, along with longitudinal studies, are needed to ensure their integration into clinical practice. Addressing the identified limitations and intensifying research efforts will improve their relevance and reliability in real medical scenarios.

Fast aberration correction in 3D transcranial photoacoustic computed tomography via a learning-based image reconstruction method.

Huang HK, Kuo J, Zhang Y, Aborahama Y, Cui M, Sastry K, Park S, Villa U, Wang LV, Anastasio MA

pubmed logopapersJun 1 2025
Transcranial photoacoustic computed tomography (PACT) holds significant potential as a neuroimaging modality. However, compensating for skull-induced aberrations in reconstructed images remains a challenge. Although optimization-based image reconstruction methods (OBRMs) can account for the relevant wave physics, they are computationally demanding and generally require accurate estimates of the skull's viscoelastic parameters. To circumvent these issues, a learning-based image reconstruction method was investigated for three-dimensional (3D) transcranial PACT. The method was systematically assessed in virtual imaging studies that involved stochastic 3D numerical head phantoms and applied to experimental data acquired by use of a physical head phantom that involved a human skull. The results demonstrated that the learning-based method yielded accurate images and exhibited robustness to errors in the assumed skull properties, while substantially reducing computational times compared to an OBRM. To the best of our knowledge, this is the first demonstration of a learned image reconstruction method for 3D transcranial PACT.

Multi-class brain malignant tumor diagnosis in magnetic resonance imaging using convolutional neural networks.

Lv J, Wu L, Hong C, Wang H, Wu Z, Chen H, Liu Z

pubmed logopapersJun 1 2025
Glioblastoma (GBM), primary central nervous system lymphoma (PCNSL), and brain metastases (BM) are common malignant brain tumors with similar radiological features, while the accurate and non-invasive dialgnosis is essential for selecting appropriate treatment plans. This study develops a deep learning model, FoTNet, to improve the automatic diagnosis accuracy of these tumors, particularly for the relatively rare PCNSL tumor. The model integrates a frequency-based channel attention layer and the focal loss to address the class imbalance issue caused by the limited samples of PCNSL. A multi-center MRI dataset was constructed by collecting and integrating data from Sir Run Run Shaw Hospital, along with public datasets from UPENN and TCGA. The dataset includes T1-weighted contrast-enhanced (T1-CE) MRI images from 58 GBM, 82 PCNSL, and 269 BM cases, which were divided into training and testing sets with a 5:2 ratio. FoTNet achieved a classification accuracy of 92.5 % and an average AUC of 0.9754 on the test set, significantly outperforming existing machine learning and deep learning methods in distinguishing among GBM, PCNSL, and BM. Through multiple validations, FoTNet has proven to be an effective and robust tool for accurately classifying these brain tumors, providing strong support for preoperative diagnosis and assisting clinicians in making more informed treatment decisions.

The impact of Alzheimer's disease on cortical complexity and its underlying biological mechanisms.

Chen L, Zhou X, Qiao Y, Wang Y, Zhou Z, Jia S, Sun Y, Peng D

pubmed logopapersJun 1 2025
Alzheimer's disease (AD) might impact the complexity of cerebral cortex, and the underlying biological mechanisms responsible for cortical changes in the AD cortex remain unclear. Fifty-eight participants with AD and 67 normal controls underwent high-resolution 3 T structural brain MRI. Using surface-based morphometry (SBM), we created vertex-wise maps for group comparisons in terms of five measures: cortical thickness, fractal dimension, gyrification index, Toro's gyrification index and sulcal depth respectively. Five machine learning (ML) models combining SBM parameters were established to predict AD. In addition, transcription-neuroimaging association analyses, as well as Mendelian randomization of AD and cortical thickness data, were conducted to investigate the genetic mechanisms and biological functions of AD. AD patients exhibited topological changes in cortical complexity, with increased complexity in the frontal and temporal cortex and decreased complexity in the insula cortex, alongside extensive cortical atrophy. Combining different SBM measures could aid disease diagnosis. The genes involved in cell structure support and the immune response were the strongest contributors to cortical anatomical features in AD patients. The identified genes associated with AD cortical morphology were overexpressed or underexpressed in excitatory neurons, oligodendrocytes, and astrocytes. Complexity alterations of the cerebral surface may be associated with a range of biological processes and molecular mechanisms, including immune responses. The present findings may contribute to a more comprehensive understanding of brain morphological patterns in AD patients.

multiPI-TransBTS: A multi-path learning framework for brain tumor image segmentation based on multi-physical information.

Zhu H, Huang J, Chen K, Ying X, Qian Y

pubmed logopapersJun 1 2025
Brain Tumor Segmentation (BraTS) plays a critical role in clinical diagnosis, treatment planning, and monitoring the progression of brain tumors. However, due to the variability in tumor appearance, size, and intensity across different MRI modalities, automated segmentation remains a challenging task. In this study, we propose a novel Transformer-based framework, multiPI-TransBTS, which integrates multi-physical information to enhance segmentation accuracy. The model leverages spatial information, semantic information, and multi-modal imaging data, addressing the inherent heterogeneity in brain tumor characteristics. The multiPI-TransBTS framework consists of an encoder, an Adaptive Feature Fusion (AFF) module, and a multi-source, multi-scale feature decoder. The encoder incorporates a multi-branch architecture to separately extract modality-specific features from different MRI sequences. The AFF module fuses information from multiple sources using channel-wise and element-wise attention, ensuring effective feature recalibration. The decoder combines both common and task-specific features through a Task-Specific Feature Introduction (TSFI) strategy, producing accurate segmentation outputs for Whole Tumor (WT), Tumor Core (TC), and Enhancing Tumor (ET) regions. Comprehensive evaluations on the BraTS2019 and BraTS2020 datasets demonstrate the superiority of multiPI-TransBTS over the state-of-the-art methods. The model consistently achieves better Dice coefficients, Hausdorff distances, and Sensitivity scores, highlighting its effectiveness in addressing the BraTS challenges. Our results also indicate the need for further exploration of the balance between precision and recall in the ET segmentation task. The proposed framework represents a significant advancement in BraTS, with potential implications for improving clinical outcomes for brain tumor patients.

Advances in MRI optic nerve segmentation.

Xena-Bosch C, Kodali S, Sahi N, Chard D, Llufriu S, Toosy AT, Martinez-Heras E, Prados F

pubmed logopapersJun 1 2025
Understanding optic nerve structure and monitoring changes within it can provide insights into neurodegenerative diseases like multiple sclerosis, in which optic nerves are often damaged by inflammatory episodes of optic neuritis. Over the past decades, interest in the optic nerve has increased, particularly with advances in magnetic resonance technology and the advent of deep learning solutions. These advances have significantly improved the visualisation and analysis of optic nerves, making it possible to detect subtle changes that aid the early diagnosis and treatment of optic nerve-related diseases, and for planning radiotherapy interventions. Effective segmentation techniques, therefore, are crucial for enhancing the accuracy of predictive models, planning interventions and treatment strategies. This comprehensive review, which includes 27 peer-reviewed articles published between 2007 and 2024, examines and highlights the evolution of optic nerve magnetic resonance imaging segmentation over the past decade, tracing the development from intensity-based methods to the latest deep learning algorithms, including multi-atlas solutions using single or multiple image modalities.
Page 101 of 1261251 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.