Sort by:
Page 10 of 81804 results

SPARSE Data, Rich Results: Few-Shot Semi-Supervised Learning via Class-Conditioned Image Translation

Guido Manni, Clemente Lauretti, Loredana Zollo, Paolo Soda

arxiv logopreprintAug 8 2025
Deep learning has revolutionized medical imaging, but its effectiveness is severely limited by insufficient labeled training data. This paper introduces a novel GAN-based semi-supervised learning framework specifically designed for low labeled-data regimes, evaluated across settings with 5 to 50 labeled samples per class. Our approach integrates three specialized neural networks -- a generator for class-conditioned image translation, a discriminator for authenticity assessment and classification, and a dedicated classifier -- within a three-phase training framework. The method alternates between supervised training on limited labeled data and unsupervised learning that leverages abundant unlabeled images through image-to-image translation rather than generation from noise. We employ ensemble-based pseudo-labeling that combines confidence-weighted predictions from the discriminator and classifier with temporal consistency through exponential moving averaging, enabling reliable label estimation for unlabeled data. Comprehensive evaluation across eleven MedMNIST datasets demonstrates that our approach achieves statistically significant improvements over six state-of-the-art GAN-based semi-supervised methods, with particularly strong performance in the extreme 5-shot setting where the scarcity of labeled data is most challenging. The framework maintains its superiority across all evaluated settings (5, 10, 20, and 50 shots per class). Our approach offers a practical solution for medical imaging applications where annotation costs are prohibitive, enabling robust classification performance even with minimal labeled data. Code is available at https://github.com/GuidoManni/SPARSE.

Variational volume reconstruction with the Deep Ritz Method

Conor Rowan, Sumedh Soman, John A. Evans

arxiv logopreprintAug 8 2025
We present a novel approach to variational volume reconstruction from sparse, noisy slice data using the Deep Ritz method. Motivated by biomedical imaging applications such as MRI-based slice-to-volume reconstruction (SVR), our approach addresses three key challenges: (i) the reliance on image segmentation to extract boundaries from noisy grayscale slice images, (ii) the need to reconstruct volumes from a limited number of slice planes, and (iii) the computational expense of traditional mesh-based methods. We formulate a variational objective that combines a regression loss designed to avoid image segmentation by operating on noisy slice data directly with a modified Cahn-Hilliard energy incorporating anisotropic diffusion to regularize the reconstructed geometry. We discretize the phase field with a neural network, approximate the objective at each optimization step with Monte Carlo integration, and use ADAM to find the minimum of the approximated variational objective. While the stochastic integration may not yield the true solution to the variational problem, we demonstrate that our method reliably produces high-quality reconstructed volumes in a matter of seconds, even when the slice data is sparse and noisy.

Three-dimensional pulp chamber volume quantification in first molars using CBCT: Implications for machine learning-assisted age estimation

Ding, Y., Zhong, T., He, Y., Wang, W., Zhang, S., Zhang, X., Shi, W., jin, b.

medrxiv logopreprintAug 8 2025
Accurate adult age estimation represents a critical component of forensic individual identification. However, traditional methods relying on skeletal developmental characteristics are susceptible to preservation status and developmental variation. Teeth, owing to their exceptional taphonomic resistance and minimal postmortem alteration, emerge as premier biological samples. Utilizing the high-resolution capabilities of Cone Beam Computed Tomography (CBCT), this study retrospectively analyzed 1,857 right first molars obtained from Han Chinese adults in Sichuan Province (883 males, 974 females; aged 18-65 years). Pulp chamber volume (PCV) was measured using semi-automatic segmentation in Mimics software (v21.0). Statistically significant differences in PCV were observed based on sex and tooth position (maxillary vs. mandibular). Significant negative correlations existed between PCV and age (r = -0.86 to -0.81). The strongest correlation (r = -0.88) was identified in female maxillary first molars. Eleven curvilinear regression models and six machine learning models (Linear Regression, Lasso Regression, Neural Network, Random Forest, Gradient Boosting, and XGBoost) were developed. Among the curvilinear regression models, the cubic model demonstrated the best performance, with the female maxillary-specific model achieving a mean absolute error (MAE) of 4.95 years. Machine learning models demonstrated superior accuracy. Specifically, the sex- and tooth position-specific XGBoost model for female maxillary first molars achieved an MAE of 3.14 years (R{superscript 2} = 0.87). This represents a significant 36.5% reduction in error compared to the optimal cubic regression model. These findings demonstrate that PCV measurements in first molars, combined with machine learning algorithms (specifically XGBoost), effectively overcome the limitations of traditional methods, providing a highly precise and reproducible approach for forensic age estimation.

Unsupervised learning for inverse problems in computed tomography

Laura Hellwege, Johann Christopher Engster, Moritz Schaar, Thorsten M. Buzug, Maik Stille

arxiv logopreprintAug 7 2025
This study presents an unsupervised deep learning approach for computed tomography (CT) image reconstruction, leveraging the inherent similarities between deep neural network training and conventional iterative reconstruction methods. By incorporating forward and backward projection layers within the deep learning framework, we demonstrate the feasibility of reconstructing images from projection data without relying on ground-truth images. Our method is evaluated on the two-dimensional 2DeteCT dataset, showcasing superior performance in terms of mean squared error (MSE) and structural similarity index (SSIM) compared to traditional filtered backprojection (FBP) and maximum likelihood (ML) reconstruction techniques. Additionally, our approach significantly reduces reconstruction time, making it a promising alternative for real-time medical imaging applications. Future work will focus on extending this methodology to three-dimensional reconstructions and enhancing the adaptability of the projection geometry.

Enhancing Domain Generalization in Medical Image Segmentation With Global and Local Prompts.

Zhao C, Li X

pubmed logopapersAug 7 2025
Enhancing domain generalization (DG) is a crucial and compelling research pursuit within the field of medical image segmentation, owing to the inherent heterogeneity observed in medical images. The recent success with large-scale pre-trained vision models (PVMs), such as Vision Transformer (ViT), inspires us to explore their application in this specific area. While a straightforward strategy involves fine-tuning the PVM using supervised signals from the source domains, this approach overlooks the domain shift issue and neglects the rich knowledge inherent in the instances themselves. To overcome these limitations, we introduce a novel framework enhanced by global and local prompts (GLPs). Specifically, to adapt PVM in the medical DG scenario, we explicitly separate domain-shared and domain-specific knowledge in the form of GLPs. Furthermore, we develop an individualized domain adapter to intricately investigate the relationship between each target domain sample and the source domains. To harness the inherent knowledge within instances, we devise two innovative regularization terms from both the consistency and anatomy perspectives, encouraging the model to preserve instance discriminability and organ position invariance. Extensive experiments and in-depth discussions in both vanilla and semi-supervised DG scenarios deriving from five diverse medical datasets consistently demonstrate the superior segmentation performance achieved by GLP. Our code and datasets are publicly available at https://github.com/xmed-lab/GLP.

MoMA: A Mixture-of-Multimodal-Agents Architecture for Enhancing Clinical Prediction Modelling

Jifan Gao, Mahmudur Rahman, John Caskey, Madeline Oguss, Ann O'Rourke, Randy Brown, Anne Stey, Anoop Mayampurath, Matthew M. Churpek, Guanhua Chen, Majid Afshar

arxiv logopreprintAug 7 2025
Multimodal electronic health record (EHR) data provide richer, complementary insights into patient health compared to single-modality data. However, effectively integrating diverse data modalities for clinical prediction modeling remains challenging due to the substantial data requirements. We introduce a novel architecture, Mixture-of-Multimodal-Agents (MoMA), designed to leverage multiple large language model (LLM) agents for clinical prediction tasks using multimodal EHR data. MoMA employs specialized LLM agents ("specialist agents") to convert non-textual modalities, such as medical images and laboratory results, into structured textual summaries. These summaries, together with clinical notes, are combined by another LLM ("aggregator agent") to generate a unified multimodal summary, which is then used by a third LLM ("predictor agent") to produce clinical predictions. Evaluating MoMA on three prediction tasks using real-world datasets with different modality combinations and prediction settings, MoMA outperforms current state-of-the-art methods, highlighting its enhanced accuracy and flexibility across various tasks.

MedMambaLite: Hardware-Aware Mamba for Medical Image Classification

Romina Aalishah, Mozhgan Navardi, Tinoosh Mohsenin

arxiv logopreprintAug 7 2025
AI-powered medical devices have driven the need for real-time, on-device inference such as biomedical image classification. Deployment of deep learning models at the edge is now used for applications such as anomaly detection and classification in medical images. However, achieving this level of performance on edge devices remains challenging due to limitations in model size and computational capacity. To address this, we present MedMambaLite, a hardware-aware Mamba-based model optimized through knowledge distillation for medical image classification. We start with a powerful MedMamba model, integrating a Mamba structure for efficient feature extraction in medical imaging. We make the model lighter and faster in training and inference by modifying and reducing the redundancies in the architecture. We then distill its knowledge into a smaller student model by reducing the embedding dimensions. The optimized model achieves 94.5% overall accuracy on 10 MedMNIST datasets. It also reduces parameters 22.8x compared to MedMamba. Deployment on an NVIDIA Jetson Orin Nano achieves 35.6 GOPS/J energy per inference. This outperforms MedMamba by 63% improvement in energy per inference.

RegionMed-CLIP: A Region-Aware Multimodal Contrastive Learning Pre-trained Model for Medical Image Understanding

Tianchen Fang, Guiru Liu

arxiv logopreprintAug 7 2025
Medical image understanding plays a crucial role in enabling automated diagnosis and data-driven clinical decision support. However, its progress is impeded by two primary challenges: the limited availability of high-quality annotated medical data and an overreliance on global image features, which often miss subtle but clinically significant pathological regions. To address these issues, we introduce RegionMed-CLIP, a region-aware multimodal contrastive learning framework that explicitly incorporates localized pathological signals along with holistic semantic representations. The core of our method is an innovative region-of-interest (ROI) processor that adaptively integrates fine-grained regional features with the global context, supported by a progressive training strategy that enhances hierarchical multimodal alignment. To enable large-scale region-level representation learning, we construct MedRegion-500k, a comprehensive medical image-text corpus that features extensive regional annotations and multilevel clinical descriptions. Extensive experiments on image-text retrieval, zero-shot classification, and visual question answering tasks demonstrate that RegionMed-CLIP consistently exceeds state-of-the-art vision language models by a wide margin. Our results highlight the critical importance of region-aware contrastive pre-training and position RegionMed-CLIP as a robust foundation for advancing multimodal medical image understanding.

Improving Radiology Report Generation with Semantic Understanding.

Ahn S, Park H, Yoo J, Choi J

pubmed logopapersAug 7 2025
This study proposes RRG-LLM, a model designed to enhance RRG by effectively learning medical domain with minimal computational resources. Initially, LLM is finetuned by LoRA, enabling efficient adaptation to the medical domain. Subsequently, only the linear projection layer that project the image into text is finetuned to extract important information from the radiology image and project it onto the text dimension. Proposed model demonstrated notable improvements in report generation. The performance of ROUGE-L was improved by 0.096 (51.7%) and METEOR by 0.046 (42.85%) compared to the baseline model.

Patient Preferences for Artificial Intelligence in Medical Imaging: A Single-Center Cross-Sectional Survey.

McGhee KN, Barrett DJ, Safarini O, Elkassem AA, Eddins JT, Smith AD, Rothenberg SA

pubmed logopapersAug 7 2025
Artificial Intelligence (AI) is rapidly being implemented into clinical practice to improve diagnostic accuracy and reduce provider burnout. However, patient self-perceived knowledge and perceptions of AI's role in their care remain unclear. This study aims to explore patient preferences regarding the use of and communication of AI in their care for patients undergoing cross-sectional imaging exams. This single-center cross-sectional study, a structured questionnaire recruited patients undergoing outpatient CT or MRI examinations between June and July 2024 to assess baseline self-perceived knowledge of AI, perspectives on AI in clinical care, preferences regarding AI-generated results, and economic considerations related to AI, using Likert scales and categorical questions. A total of 226 participants (143 females; mean age 53 years) were surveyed with 67.4% (151/224) reporting having minimal to no knowledge of AI in medicine, with lower knowledge levels associated with lower socioeconomic status (p < .001). 90.3% (204/226) believed they should be informed about the use of AI in their care, and 91.1% (204/224) supported the right to opt out. Additionally, 91.1% (204/224) of participants expressed a strong preference for being informed when AI was involved in interpreting their medical images. 65.6% (143/218) indicated that they would not accept a screening imaging exam exclusively interpreted by an AI algorithm. Finally, 91.1% (204/224) of participants wanted disclosure when AI was used and 89.1% (196/220) felt such disclosure and clarification of discrepancies should be considered standard care. To align AI adoption with patient preferences and expectations, radiology practices must prioritize disclosure, patient engagement, and standardized documentation of AI use without being overly burdensome to the diagnostic workflow. Patients prefer transparency for AI utilization in their care, and our study highlights the discrepancy between patient preferences and current clinical practice. Patients are not expected to determine the technical aspects of an image examination such as acquisition parameters or reconstruction kernel and must trust their providers to act in their best interest. Clear communication of how AI is being used in their care should be provided in ways that do not overly burden the radiologist.
Page 10 of 81804 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.