Sort by:
Page 1 of 546 results
Next

Data-efficient generalization of AI transformers for noise reduction in ultra-fast lung PET scans.

Wang J, Zhang X, Miao Y, Xue S, Zhang Y, Shi K, Guo R, Li B, Zheng G

pubmed logopapersJul 1 2025
Respiratory motion during PET acquisition may produce lesion blurring. Ultra-fast 20-second breath-hold (U2BH) PET reduces respiratory motion artifacts, but the shortened scanning time increases statistical noise and may affect diagnostic quality. This study aims to denoise the U2BH PET images using a deep learning (DL)-based method. The study was conducted on two datasets collected from five scanners where the first dataset included 1272 retrospectively collected full-time PET data while the second dataset contained 46 prospectively collected U2BH and the corresponding full-time PET/CT images. A robust and data-efficient DL method called mask vision transformer (Mask-ViT) was proposed which, after fine-tuned on a limited number of training data from a target scanner, was directly applied to unseen testing data from new scanners. The performance of Mask-ViT was compared with state-of-the-art DL methods including U-Net and C-Gan taking the full-time PET images as the reference. Statistical analysis on image quality metrics were carried out with Wilcoxon signed-rank test. For clinical evaluation, two readers scored image quality on a 5-point scale (5 = excellent) and provided a binary assessment for diagnostic quality evaluation. The U2BH PET images denoised by Mask-ViT showed statistically significant improvement over U-Net and C-Gan on image quality metrics (p < 0.05). For clinical evaluation, Mask-ViT exhibited a lesion detection accuracy of 91.3%, 90.4% and 91.7%, when it was evaluated on three different scanners. Mask-ViT can effectively enhance the quality of the U2BH PET images in a data-efficient generalization setup. The denoised images meet clinical diagnostic requirements of lesion detectability.

Deep learning-based time-of-flight (ToF) enhancement of non-ToF PET scans for different radiotracers.

Mehranian A, Wollenweber SD, Bradley KM, Fielding PA, Huellner M, Iagaru A, Dedja M, Colwell T, Kotasidis F, Johnsen R, Jansen FP, McGowan DR

pubmed logopapersJul 1 2025
To evaluate a deep learning-based time-of-flight (DLToF) model trained to enhance the image quality of non-ToF PET images for different tracers, reconstructed using BSREM algorithm, towards ToF images. A 3D residual U-NET model was trained using 8 different tracers (FDG: 75% and non-FDG: 25%) from 11 sites from US, Europe and Asia. A total of 309 training and 33 validation datasets scanned on GE Discovery MI (DMI) ToF scanners were used for development of DLToF models of three strengths: low (L), medium (M) and high (H). The training and validation pairs consisted of target ToF and input non-ToF BSREM reconstructions using site-preferred regularisation parameters (beta values). The contrast and noise properties of each model were defined by adjusting the beta value of target ToF images. A total of 60 DMI datasets, consisting of a set of 4 tracers (<sup>18</sup>F-FDG, <sup>18</sup>F-PSMA, <sup>68</sup>Ga-PSMA, <sup>68</sup>Ga-DOTATATE) and 15 exams each, were collected for testing and quantitative analysis of the models based on standardized uptake value (SUV) in regions of interest (ROI) placed in lesions, lungs and liver. Each dataset includes 5 image series: ToF and non-ToF BSREM and three DLToF images. The image series (300 in total) were blind scored on a 5-point Likert score by 4 readers based on lesion detectability, diagnostic confidence, and image noise/quality. In lesion SUV<sub>max</sub> quantification with respect to ToF BSREM, DLToF-H achieved the best results among the three models by reducing the non-ToF BSREM errors from -39% to -6% for <sup>18</sup>F-FDG (38 lesions); from -42% to -7% for <sup>18</sup>F-PSMA (35 lesions); from -34% to -4% for <sup>68</sup>Ga-PSMA (23 lesions) and from -34% to -12% for <sup>68</sup>Ga-DOTATATE (32 lesions). Quantification results in liver and lung also showed ToF-like performance of DLToF models. Clinical reader resulted showed that DLToF-H results in an improved lesion detectability on average for all four radiotracers whereas DLToF-L achieved the highest scores for image quality (noise level). The results of DLToF-M however showed that this model results in the best trade-off between lesion detection and noise level and hence achieved the highest score for diagnostic confidence on average for all radiotracers. This study demonstrated that the DLToF models are suitable for both FDG and non-FDG tracers and could be utilized for digital BGO PET/CT scanners to provide an image quality and lesion detectability comparable and close to ToF.

Development and validation of a nomogram for predicting bone marrow involvement in lymphoma patients based on <sup>18</sup>F-FDG PET radiomics and clinical factors.

Lu D, Zhu X, Mu X, Huang X, Wei F, Qin L, Liu Q, Fu W, Deng Y

pubmed logopapersJul 1 2025
This study aimed to develop and validate a nomogram combining <sup>18</sup>F-FDG PET radiomics and clinical factors to non-invasively predict bone marrow involvement (BMI) in patients with lymphoma. A radiomics nomogram was developed using monocentric data, randomly divided into a training set (70%) and a test set (30%). Bone marrow biopsy (BMB) served as the gold standard for BMI diagnosis. Independent clinical risk factors were identified through univariate and multivariate logistic regression analyses to construct a clinical model. Radiomics features were extracted from PET and CT images and selected using least absolute shrinkage and selection operator (LASSO) regression, yielding a radiomics score (Rad<sub>score</sub>) for each patient. Models based on clinical factors, CT Rad<sub>score</sub>, and PET Rad<sub>score</sub> were established and evaluated using eight machine learning algorithms to identify the optimal prediction model. A combined model was constructed and presented as a nomogram. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis (DCA). A total of 160 patients were included, of whom 70 had BMI based on BMB results. The training group comprised 112 patients (BMI: 56, without BMI: 56), while the test group included 48 patients (BMI: 14, without BMI: 34). Independent risk factors, including the number of extranodal involvements and B symptoms, were incorporated into the clinical model. In the clinical model, CT Rad<sub>score</sub>, and PET Rad<sub>score</sub>, the AUCs in the test set were 0.820 (95% CI: 0.705-0.935), 0.538 (95% CI: 0.351-0.723), and 0.836 (95% CI: 0.686-0.986). Due to the limited diagnostic performance of CT Rad<sub>score</sub>, the nomogram was constructed using PET Rad<sub>score</sub> and the clinical model. The radiomics nomogram achieved AUCs of 0.916 (95% CI: 0.865-0.967) in the training set and 0.863 (95% CI: 0.763-0.964) in the test set. Calibration curves and DCA confirmed the nomogram's discrimination, calibration, and clinical utility in both sets. By integrating PET Rad<sub>score</sub>, the number of extranodal involvements, and B symptoms, this <sup>18</sup>F-FDG PET radiomics-based nomogram offers a non-invasive method to predict bone marrow status in lymphoma patients, providing nuclear medicine physicians with valuable decision support for pre-treatment evaluation.

Prediction of PD-L1 expression in NSCLC patients using PET/CT radiomics and prognostic modelling for immunotherapy in PD-L1-positive NSCLC patients.

Peng M, Wang M, Yang X, Wang Y, Xie L, An W, Ge F, Yang C, Wang K

pubmed logopapersJul 1 2025
To develop a positron emission tomography/computed tomography (PET/CT)-based radiomics model for predicting programmed cell death ligand 1 (PD-L1) expression in non-small cell lung cancer (NSCLC) patients and estimating progression-free survival (PFS) and overall survival (OS) in PD-L1-positive patients undergoing first-line immunotherapy. We retrospectively analysed 143 NSCLC patients who underwent pretreatment <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) PET/CT scans, of whom 86 were PD-L1-positive. Clinical data collected included gender, age, smoking history, Tumor-Node-Metastases (TNM) staging system, pathologic types, laboratory parameters, and PET metabolic parameters. Four machine learning algorithms-Bayes, logistic, random forest, and Supportsupport vector machine (SVM)-were used to build models. The predictive performance was validated using receiver operating characteristic (ROC) curves. Univariate and multivariate Cox analyses identified independent predictors of OS and PFS in PD-L1-positive expression patients undergoing immunotherapy, and a nomogram was created to predict OS. A total of 20 models were built for predicting PD-L1 expression. The clinical combined PET/CT radiomics model based on the SVM algorithm performed best (area under curve for training and test sets: 0.914 and 0.877, respectively). The Cox analyses showed that smoking history independently predicted PFS. SUVmean, monocyte percentage and white blood cell count were independent predictors of OS, and the nomogram was created to predict 1-year, 2-year, and 3-year OS based on these three factors. We developed PET/CT-based machine learning models to help predict PD-L1 expression in NSCLC patients and identified independent predictors of PFS and OS in PD-L1-positive patients receiving immunotherapy, thereby aiding precision treatment.

Robust and generalizable artificial intelligence for multi-organ segmentation in ultra-low-dose total-body PET imaging: a multi-center and cross-tracer study.

Wang H, Qiao X, Ding W, Chen G, Miao Y, Guo R, Zhu X, Cheng Z, Xu J, Li B, Huang Q

pubmed logopapersJul 1 2025
Positron Emission Tomography (PET) is a powerful molecular imaging tool that visualizes radiotracer distribution to reveal physiological processes. Recent advances in total-body PET have enabled low-dose, CT-free imaging; however, accurate organ segmentation using PET-only data remains challenging. This study develops and validates a deep learning model for multi-organ PET segmentation across varied imaging conditions and tracers, addressing critical needs for fully PET-based quantitative analysis. This retrospective study employed a 3D deep learning-based model for automated multi-organ segmentation on PET images acquired under diverse conditions, including low-dose and non-attenuation-corrected scans. Using a dataset of 798 patients from multiple centers with varied tracers, model robustness and generalizability were evaluated via multi-center and cross-tracer tests. Ground-truth labels for 23 organs were generated from CT images, and segmentation accuracy was assessed using the Dice similarity coefficient (DSC). In the multi-center dataset from four different institutions, our model achieved average DSC values of 0.834, 0.825, 0.819, and 0.816 across varying dose reduction factors and correction conditions for FDG PET images. In the cross-tracer dataset, the model reached average DSC values of 0.737, 0.573, 0.830, 0.661, and 0.708 for DOTATATE, FAPI, FDG, Grazytracer, and PSMA, respectively. The proposed model demonstrated effective, fully PET-based multi-organ segmentation across a range of imaging conditions, centers, and tracers, achieving high robustness and generalizability. These findings underscore the model's potential to enhance clinical diagnostic workflows by supporting ultra-low dose PET imaging. Not applicable. This is a retrospective study based on collected data, which has been approved by the Research Ethics Committee of Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine.

Filling of incomplete sinograms from sparse PET detector configurations using a residual U-Net

Klara Leffler, Luigi Tommaso Luppino, Samuel Kuttner, Karin Söderkvist, Jan Axelsson

arxiv logopreprintJun 24 2025
Long axial field-of-view PET scanners offer increased field-of-view and sensitivity compared to traditional PET scanners. However, a significant cost is associated with the densely packed photodetectors required for the extended-coverage systems, limiting clinical utilisation. To mitigate the cost limitations, alternative sparse system configurations have been proposed, allowing an extended field-of-view PET design with detector costs similar to a standard PET system, albeit at the expense of image quality. In this work, we propose a deep sinogram restoration network to fill in the missing sinogram data. Our method utilises a modified Residual U-Net, trained on clinical PET scans from a GE Signa PET/MR, simulating the removal of 50% of the detectors in a chessboard pattern (retaining only 25% of all lines of response). The model successfully recovers missing counts, with a mean absolute error below two events per pixel, outperforming 2D interpolation in both sinogram and reconstructed image domain. Notably, the predicted sinograms exhibit a smoothing effect, leading to reconstructed images lacking sharpness in finer details. Despite these limitations, the model demonstrates a substantial capacity for compensating for the undersampling caused by the sparse detector configuration. This proof-of-concept study suggests that sparse detector configurations, combined with deep learning techniques, offer a viable alternative to conventional PET scanner designs. This approach supports the development of cost-effective, total body PET scanners, allowing a significant step forward in medical imaging technology.

Machine learning-based construction and validation of an radiomics model for predicting ISUP grading in prostate cancer: a multicenter radiomics study based on [68Ga]Ga-PSMA PET/CT.

Zhang H, Jiang X, Yang G, Tang Y, Qi L, Chen M, Hu S, Gao X, Zhang M, Chen S, Cai Y

pubmed logopapersJun 24 2025
The International Society of Urological Pathology (ISUP) grading of prostate cancer (PCa) is a crucial factor in the management and treatment planning for PCa patients. An accurate and non-invasive assessment of the ISUP grading group could significantly improve biopsy decisions and treatment planning. The use of PSMA-PET/CT radiomics for predicting ISUP has not been widely studied. The aim of this study is to investigate the role of <sup>68</sup>Ga-PSMA PET/CT radiomics in predicting the ISUP grading of primary PCa. This study included 415 PCa patients who underwent <sup>68</sup>Ga-PSMA PET/CT scans before prostate biopsy or radical prostatectomy. Patients were from three centers: Xiangya Hospital, Central South University (252 cases), Qilu Hospital of Shandong University (External Validation 1, 108 cases), and Qingdao University Medical College (External Validation 2, 55 cases). Xiangya Hospital cases were split into training and testing groups (1:1 ratio), with the other centers serving as external validation groups. Feature selection was performed using Minimum Redundancy Maximum Relevance (mRMR) and Least Absolute Shrinkage and Selection Operator (LASSO) algorithms. Eight machine learning classifiers were trained and tested with ten-fold cross-validation. Sensitivity, specificity, and AUC were calculated for each model. Additionally, we combined the radiomic features with maximum Standardized Uptake Value (SUVmax) and prostate-specific antigen (PSA) to create prediction models and tested the corresponding performances. The best-performing model in the Xiangya Hospital training cohort achieved an AUC of 0.868 (sensitivity 72.7%, specificity 96.0%). Similar trends were seen in the testing cohort and external validation centers (AUCs: 0.860, 0.827, and 0.812). After incorporating PSA and SUVmax, a more robust model was developed, achieving an AUC of 0.892 (sensitivity 77.9%, specificity 96.0%) in the training group. This study established and validated a radiomics model based on <sup>68</sup>Ga-PSMA PET/CT, offering an accurate, non-invasive method for predicting ISUP grades in prostate cancer. A multicenter design with external validation ensured the model's robustness and broad applicability. This is the largest study to date on PSMA radiomics for predicting ISUP grades. Notably, integrating SUVmax and PSA metrics with radiomic features significantly improved prediction accuracy, providing new insights and tools for personalized diagnosis and treatment.

A Robust Residual Three-dimensional Convolutional Neural Networks Model for Prediction of Amyloid-β Positivity by Using FDG-PET.

Ardakani I, Yamada T, Iwano S, Kumar Maurya S, Ishii K

pubmed logopapersJun 17 2025
Widely used in oncology PET, 2-deoxy-2-18F-FDG PET is more accessible and affordable than amyloid PET, which is a crucial tool to determine amyloid positivity in diagnosis of Alzheimer disease (AD). This study aimed to leverage deep learning with residual 3D convolutional neural networks (3DCNN) to develop a robust model that predicts amyloid-β positivity by using FDG-PET. In this study, a cohort of 187 patients was used for model development. It consisted of patients ranging from cognitively normal to those with dementia and other cognitive impairments who underwent T1-weighted MRI, 18F-FDG, and 11C-Pittsburgh compound B (PiB) PET scans. A residual 3DCNN model was configured using nonexhaustive grid search and trained on repeated random splits of our development data set. We evaluated the performance of our model, and particularly its robustness, using a multisite data set of 99 patients of different ethnicities with images at different site harmonization levels. Our model achieved mean AUC scores of 0.815 and 0.840 on images without and with site harmonization correspondingly. Respectively, it achieved higher AUC scores of 0.801 and 0.834 in the cognitively normal (CN) group compared with 0.777 and 0.745 in the dementia group. As for F1 score, the corresponding mean scores were 0.770 and 0.810 on images without and with site harmonization. In the CN group, it achieved lower F1 scores of 0.580 and 0.658 compared with 0.907 and 0.931 in the dementia group. We demonstrated that residual 3DCNN can learn complex 3D spatial patterns in FDG-PET images and robustly predict amyloid-β positivity with significantly less reliance on site harmonization preprocessing.

AI based automatic measurement of split renal function in [<sup>18</sup>F]PSMA-1007 PET/CT.

Valind K, Ulén J, Gålne A, Jögi J, Minarik D, Trägårdh E

pubmed logopapersJun 16 2025
Prostate-specific membrane antigen (PSMA) is an important target for positron emission tomography (PET) with computed tomography (CT) in prostate cancer. In addition to overexpression in prostate cancer cells, PSMA is expressed in healthy cells in the proximal tubules of the kidneys. Consequently, PSMA PET is being explored for renal functional imaging. Left and right renal uptake of PSMA targeted radiopharmaceuticals have shown strong correlations to split renal function (SRF) as determined by other methods. Manual segmentation of kidneys in PET images is, however, time consuming, making this method of measuring SRF impractical. In this study, we designed, trained and validated an artificial intelligence (AI) model for automatic renal segmentation and measurement of SRF in [<sup>18</sup>F]PSMA-1007 PET images. Kidneys were segmented in 135 [<sup>18</sup>F]PSMA-1007 PET/CT studies used to train the AI model. The model was evaluated in 40 test studies. Left renal function percentage (LRF%) measurements ranged from 40 to 67%. Spearman correlation coefficients for LRF% measurements ranged between 0.98 and 0.99 when comparing segmentations made by 3 human readers and the AI model. The largest LRF% difference between any measurements in a single case was 3 percentage points. The AI model produced measurements similar to those of human readers. Automatic measurement of SRF in PSMA PET is feasible. A potential use could be to provide additional data in investigation of renal functional impairment in patients treated for prostate cancer.
Page 1 of 546 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.