Sort by:
Page 1 of 22215 results
Next

"Recon-all-clinical": Cortical surface reconstruction and analysis of heterogeneous clinical brain MRI.

Gopinath K, Greve DN, Magdamo C, Arnold S, Das S, Puonti O, Iglesias JE

pubmed logopapersJul 1 2025
Surface-based analysis of the cerebral cortex is ubiquitous in human neuroimaging with MRI. It is crucial for tasks like cortical registration, parcellation, and thickness estimation. Traditionally, such analyses require high-resolution, isotropic scans with good gray-white matter contrast, typically a T1-weighted scan with 1 mm resolution. This requirement precludes application of these techniques to most MRI scans acquired for clinical purposes, since they are often anisotropic and lack the required T1-weighted contrast. To overcome this limitation and enable large-scale neuroimaging studies using vast amounts of existing clinical data, we introduce recon-all-clinical, a novel methodology for cortical reconstruction, registration, parcellation, and thickness estimation for clinical brain MRI scans of any resolution and contrast. Our approach employs a hybrid analysis method that combines a convolutional neural network (CNN) trained with domain randomization to predict signed distance functions (SDFs), and classical geometry processing for accurate surface placement while maintaining topological and geometric constraints. The method does not require retraining for different acquisitions, thus simplifying the analysis of heterogeneous clinical datasets. We evaluated recon-all-clinical on multiple public datasets like ADNI, HCP, AIBL, OASIS and including a large clinical dataset of over 9,500 scans. The results indicate that our method produces geometrically precise cortical reconstructions across different MRI contrasts and resolutions, consistently achieving high accuracy in parcellation. Cortical thickness estimates are precise enough to capture aging effects, independently of MRI contrast, even though accuracy varies with slice thickness. Our method is publicly available at https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all-clinical, enabling researchers to perform detailed cortical analysis on the huge amounts of already existing clinical MRI scans. This advancement may be particularly valuable for studying rare diseases and underrepresented populations where research-grade MRI data is scarce.

Improved unsupervised 3D lung lesion detection and localization by fusing global and local features: Validation in 3D low-dose computed tomography.

Lee JH, Oh SJ, Kim K, Lim CY, Choi SH, Chung MJ

pubmed logopapersJul 1 2025
Unsupervised anomaly detection (UAD) is crucial in low-dose computed tomography (LDCT). Recent AI technologies, leveraging global features, have enabled effective UAD with minimal training data of normal patients. However, this approach, devoid of utilizing local features, exhibits vulnerability in detecting deep lesions within the lungs. In other words, while the conventional use of global features can achieve high specificity, it often comes with limited sensitivity. Developing a UAD AI model with high sensitivity is essential to prevent false negatives, especially in screening patients with diseases demonstrating high mortality rates. We have successfully pioneered a new LDCT UAD AI model that leverages local features, achieving a previously unattainable increase in sensitivity compared to global methods (17.5% improvement). Furthermore, by integrating this approach with conventional global-based techniques, we have successfully consolidated the advantages of each model - high sensitivity from the local model and high specificity from the global model - into a single, unified, trained model (17.6% and 33.5% improvement, respectively). Without the need for additional training, we anticipate achieving significant diagnostic efficacy in various LDCT applications, where both high sensitivity and specificity are essential, using our fixed model. Code is available at https://github.com/kskim-phd/Fusion-UADL.

Rethinking boundary detection in deep learning-based medical image segmentation.

Lin Y, Zhang D, Fang X, Chen Y, Cheng KT, Chen H

pubmed logopapersJul 1 2025
Medical image segmentation is a pivotal task within the realms of medical image analysis and computer vision. While current methods have shown promise in accurately segmenting major regions of interest, the precise segmentation of boundary areas remains challenging. In this study, we propose a novel network architecture named CTO, which combines Convolutional Neural Networks (CNNs), Vision Transformer (ViT) models, and explicit edge detection operators to tackle this challenge. CTO surpasses existing methods in terms of segmentation accuracy and strikes a better balance between accuracy and efficiency, without the need for additional data inputs or label injections. Specifically, CTO adheres to the canonical encoder-decoder network paradigm, with a dual-stream encoder network comprising a mainstream CNN stream for capturing local features and an auxiliary StitchViT stream for integrating long-range dependencies. Furthermore, to enhance the model's ability to learn boundary areas, we introduce a boundary-guided decoder network that employs binary boundary masks generated by dedicated edge detection operators to provide explicit guidance during the decoding process. We validate the performance of CTO through extensive experiments conducted on seven challenging medical image segmentation datasets, namely ISIC 2016, PH2, ISIC 2018, CoNIC, LiTS17, BraTS, and BTCV. Our experimental results unequivocally demonstrate that CTO achieves state-of-the-art accuracy on these datasets while maintaining competitive model complexity. The codes have been released at: CTO.

CAD-Unet: A capsule network-enhanced Unet architecture for accurate segmentation of COVID-19 lung infections from CT images.

Dang Y, Ma W, Luo X, Wang H

pubmed logopapersJul 1 2025
Since the outbreak of the COVID-19 pandemic in 2019, medical imaging has emerged as a primary modality for diagnosing COVID-19 pneumonia. In clinical settings, the segmentation of lung infections from computed tomography images enables rapid and accurate quantification and diagnosis of COVID-19. Segmentation of COVID-19 infections in the lungs poses a formidable challenge, primarily due to the indistinct boundaries and limited contrast presented by ground glass opacity manifestations. Moreover, the confounding similarity among infiltrates, lung tissues, and lung walls further complicates this segmentation task. To address these challenges, this paper introduces a novel deep network architecture, called CAD-Unet, for segmenting COVID-19 lung infections. In this architecture, capsule networks are incorporated into the existing Unet framework. Capsule networks represent a novel type of network architecture that differs from traditional convolutional neural networks. They utilize vectors for information transfer among capsules, facilitating the extraction of intricate lesion spatial information. Additionally, we design a capsule encoder path and establish a coupling path between the unet encoder and the capsule encoder. This design maximizes the complementary advantages of both network structures while achieving efficient information fusion. Finally, extensive experiments are conducted on four publicly available datasets, encompassing binary segmentation tasks and multi-class segmentation tasks. The experimental results demonstrate the superior segmentation performance of the proposed model. The code has been released at: https://github.com/AmanoTooko-jie/CAD-Unet.

Lightweight Multi-Stage Aggregation Transformer for robust medical image segmentation.

Wang X, Zhu Y, Cui Y, Huang X, Guo D, Mu P, Xia M, Bai C, Teng Z, Chen S

pubmed logopapersJul 1 2025
Capturing rich multi-scale features is essential to address complex variations in medical image segmentation. Multiple hybrid networks have been developed to integrate the complementary benefits of convolutional neural networks (CNN) and Transformers. However, existing methods may suffer from either huge computational cost required by the complicated networks or unsatisfied performance of lighter networks. How to give full play to the advantages of both convolution and self-attention and design networks that are both effective and efficient still remains an unsolved problem. In this work, we propose a robust lightweight multi-stage hybrid architecture, named Multi-stage Aggregation Transformer version 2 (MA-TransformerV2), to extract multi-scale features with progressive aggregations for accurate segmentation of highly variable medical images at a low computational cost. Specifically, lightweight Trans blocks and lightweight CNN blocks are parallelly introduced into the dual-branch encoder module in each stage, and then a vector quantization block is incorporated at the bottleneck to discretizes the features and discard the redundance. This design not only enhances the representation capabilities and computational efficiency of the model, but also makes the model interpretable. Extensive experimental results on public datasets show that our method outperforms state-of-the-art methods, including CNN-based, Transformer-based, advanced hybrid CNN-Transformer-based models, and several lightweight models, in terms of both segmentation accuracy and model capacity. Code will be made publicly available at https://github.com/zjmiaprojects/MATransformerV2.

Human visual perception-inspired medical image segmentation network with multi-feature compression.

Li G, Huang Q, Wang W, Liu L

pubmed logopapersJul 1 2025
Medical image segmentation is crucial for computer-aided diagnosis and treatment planning, directly influencing clinical decision-making. To enhance segmentation accuracy, existing methods typically fuse local, global, and various other features. However, these methods often ignore the negative impact of noise on the results during the feature fusion process. In contrast, certain regions of the human visual system, such as the inferotemporal cortex and parietal cortex, effectively suppress irrelevant noise while integrating multiple features-a capability lacking in current methods. To address this gap, we propose MS-Net, a medical image segmentation network inspired by human visual perception. MS-Net incorporates a multi-feature compression (MFC) module that mimics the human visual system's processing of complex images, first learning various feature types and subsequently filtering out irrelevant ones. Additionally, MS-Net features a segmentation refinement (SR) module that emulates how physicians segment lesions. This module initially performs coarse segmentation to capture the lesion's approximate location and shape, followed by a refinement step to achieve precise boundary delineation. Experimental results demonstrate that MS-Net not only attains state-of-the-art segmentation performance across three public datasets but also significantly reduces the number of parameters compared to existing models. Code is available at https://github.com/guangguangLi/MS-Net.

CALIMAR-GAN: An unpaired mask-guided attention network for metal artifact reduction in CT scans.

Scardigno RM, Brunetti A, Marvulli PM, Carli R, Dotoli M, Bevilacqua V, Buongiorno D

pubmed logopapersJul 1 2025
High-quality computed tomography (CT) scans are essential for accurate diagnostic and therapeutic decisions, but the presence of metal objects within the body can produce distortions that lower image quality. Deep learning (DL) approaches using image-to-image translation for metal artifact reduction (MAR) show promise over traditional methods but often introduce secondary artifacts. Additionally, most rely on paired simulated data due to limited availability of real paired clinical data, restricting evaluation on clinical scans to qualitative analysis. This work presents CALIMAR-GAN, a generative adversarial network (GAN) model that employs a guided attention mechanism and the linear interpolation algorithm to reduce artifacts using unpaired simulated and clinical data for targeted artifact reduction. Quantitative evaluations on simulated images demonstrated superior performance, achieving a PSNR of 31.7, SSIM of 0.877, and Fréchet inception distance (FID) of 22.1, outperforming state-of-the-art methods. On real clinical images, CALIMAR-GAN achieved the lowest FID (32.7), validated as a valuable complement to qualitative assessments through correlation with pixel-based metrics (r=-0.797 with PSNR, p<0.01; r=-0.767 with MS-SSIM, p<0.01). This work advances DL-based artifact reduction into clinical practice with high-fidelity reconstructions that enhance diagnostic accuracy and therapeutic outcomes. Code is available at https://github.com/roberto722/calimar-gan.

Mamba-based deformable medical image registration with an annotated brain MR-CT dataset.

Wang Y, Guo T, Yuan W, Shu S, Meng C, Bai X

pubmed logopapersJul 1 2025
Deformable registration is essential in medical image analysis, especially for handling various multi- and mono-modal registration tasks in neuroimaging. Existing studies lack exploration of brain MR-CT registration, and face challenges in both accuracy and efficiency improvements of learning-based methods. To enlarge the practice of multi-modal registration in brain, we present SR-Reg, a new benchmark dataset comprising 180 volumetric paired MR-CT images and annotated anatomical regions. Building on this foundation, we introduce MambaMorph, a novel deformable registration network based on an efficient state space model Mamba for global feature learning, with a fine-grained feature extractor for low-level embedding. Experimental results demonstrate that MambaMorph surpasses advanced ConvNet-based and Transformer-based networks across several multi- and mono-modal tasks, showcasing impressive enhancements of efficacy and efficiency. Code and dataset are available at https://github.com/mileswyn/MambaMorph.

Towards Foundation Models and Few-Shot Parameter-Efficient Fine-Tuning for Volumetric Organ Segmentation.

Silva-Rodríguez J, Dolz J, Ben Ayed I

pubmed logopapersJul 1 2025
The recent popularity of foundation models and the pre-train-and-adapt paradigm, where a large-scale model is transferred to downstream tasks, is gaining attention for volumetric medical image segmentation. However, current transfer learning strategies devoted to full fine-tuning for transfer learning may require significant resources and yield sub-optimal results when the labeled data of the target task is scarce. This makes its applicability in real clinical settings challenging since these institutions are usually constrained on data and computational resources to develop proprietary solutions. To address this challenge, we formalize Few-Shot Efficient Fine-Tuning (FSEFT), a novel and realistic scenario for adapting medical image segmentation foundation models. This setting considers the key role of both data- and parameter-efficiency during adaptation. Building on a foundation model pre-trained on open-access CT organ segmentation sources, we propose leveraging Parameter-Efficient Fine-Tuning and black-box Adapters to address such challenges. Furthermore, novel efficient adaptation methodologies are introduced in this work, which include Spatial black-box Adapters that are more appropriate for dense prediction tasks and constrained transductive inference, leveraging task-specific prior knowledge. Our comprehensive transfer learning experiments confirm the suitability of foundation models in medical image segmentation and unveil the limitations of popular fine-tuning strategies in few-shot scenarios. The project code is available: https://github.com/jusiro/fewshot-finetuning.

Multi-modal MRI synthesis with conditional latent diffusion models for data augmentation in tumor segmentation.

Kebaili A, Lapuyade-Lahorgue J, Vera P, Ruan S

pubmed logopapersJul 1 2025
Multimodality is often necessary for improving object segmentation tasks, especially in the case of multilabel tasks, such as tumor segmentation, which is crucial for clinical diagnosis and treatment planning. However, a major challenge in utilizing multimodality with deep learning remains: the limited availability of annotated training data, primarily due to the time-consuming acquisition process and the necessity for expert annotations. Although deep learning has significantly advanced many tasks in medical imaging, conventional augmentation techniques are often insufficient due to the inherent complexity of volumetric medical data. To address this problem, we propose an innovative slice-based latent diffusion architecture for the generation of 3D multi-modal images and their corresponding multi-label masks. Our approach enables the simultaneous generation of the image and mask in a slice-by-slice fashion, leveraging a positional encoding and a Latent Aggregation module to maintain spatial coherence and capture slice sequentiality. This method effectively reduces the computational complexity and memory demands typically associated with diffusion models. Additionally, we condition our architecture on tumor characteristics to generate a diverse array of tumor variations and enhance texture using a refining module that acts like a super-resolution mechanism, mitigating the inherent blurriness caused by data scarcity in the autoencoder. We evaluate the effectiveness of our synthesized volumes using the BRATS2021 dataset to segment the tumor with three tissue labels and compare them with other state-of-the-art diffusion models through a downstream segmentation task, demonstrating the superior performance and efficiency of our method. While our primary application is tumor segmentation, this method can be readily adapted to other modalities. Code is available here : https://github.com/Arksyd96/multi-modal-mri-and-mask-synthesis-with-conditional-slice-based-ldm.
Page 1 of 22215 results
Show
per page

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.