Sort by:
Page 4 of 29286 results

Comparative analysis of semantic-segmentation models for screen film mammograms.

Rani J, Singh J, Virmani J

pubmed logopapersJun 5 2025
Accurate segmentation of mammographic mass is very important as shape characteristics of these masses play a significant role for radiologist to diagnose benign and malignant cases. Recently, various deep learning segmentation algorithms have become popular for segmentation tasks. In the present work, rigorous performance analysis of ten semantic-segmentation models has been performed with 518 images taken from DDSM dataset (digital database for screening mammography) with 208 mass images ϵ BIRAD3, 150 mass images ϵ BIRAD4 and 160 mass images ϵ BIRAD5 classes, respectively. These models are (1) simple convolution series models namely- VGG16/VGG19, (2) simple convolution DAG (directed acyclic graph) models namely- U-Net (3) dilated convolution DAG models namely ResNet18/ResNet50/ShuffleNet/XceptionNet/InceptionV2/MobileNetV2 and (4) hybrid model, i.e. hybrid U-Net. On the basis of exhaustive experimentation, it was observed that dilated convolution DAG models namely- ResNet50, ShuffleNet and MobileNetV2 outperform other network models yielding cumulative JI and F1 score values of 0.87 and 0.92, 0.85 and 91, 0.84 and 0.90, respectively. The segmented images obtained by best performing models were subjectively analyzed by participating radiologist in terms of (a) size (b) margins and (c) shape characteristics. From objective and subjective analysis it was concluded that ResNet50 is the optimal model for segmentation of difficult to delineate breast masses with dense background and masses where both masses and micro-calcifications are simultaneously present. The result of the study indicates that ResNet50 model can be used in routine clinical environment for segmentation of mammographic masses.

A ViTUNeT-based model using YOLOv8 for efficient LVNC diagnosis and automatic cleaning of dataset.

de Haro S, Bernabé G, García JM, González-Férez P

pubmed logopapersJun 4 2025
Left ventricular non-compaction is a cardiac condition marked by excessive trabeculae in the left ventricle's inner wall. Although various methods exist to measure these structures, the medical community still lacks consensus on the best approach. Previously, we developed DL-LVTQ, a tool based on a UNet neural network, to quantify trabeculae in this region. In this study, we expand the dataset to include new patients with Titin cardiomyopathy and healthy individuals with fewer trabeculae, requiring retraining of our models to enhance predictions. We also propose ViTUNeT, a neural network architecture combining U-Net and Vision Transformers to segment the left ventricle more accurately. Additionally, we train a YOLOv8 model to detect the ventricle and integrate it with ViTUNeT model to focus on the region of interest. Results from ViTUNet and YOLOv8 are similar to DL-LVTQ, suggesting dataset quality limits further accuracy improvements. To test this, we analyze MRI images and develop a method using two YOLOv8 models to identify and remove problematic images, leading to better results. Combining YOLOv8 with deep learning networks offers a promising approach for improving cardiac image analysis and segmentation.

A review on learning-based algorithms for tractography and human brain white matter tracts recognition.

Barati Shoorche A, Farnia P, Makkiabadi B, Leemans A

pubmed logopapersJun 4 2025
Human brain fiber tractography using diffusion magnetic resonance imaging is a crucial stage in mapping brain white matter structures, pre-surgical planning, and extracting connectivity patterns. Accurate and reliable tractography, by providing detailed geometric information about the position of neural pathways, minimizes the risk of damage during neurosurgical procedures. Both tractography itself and its post-processing steps such as bundle segmentation are usually used in these contexts. Many approaches have been put forward in the past decades and recently, multiple data-driven tractography algorithms and automatic segmentation pipelines have been proposed to address the limitations of traditional methods. Several of these recent methods are based on learning algorithms that have demonstrated promising results. In this study, in addition to introducing diffusion MRI datasets, we review learning-based algorithms such as conventional machine learning, deep learning, reinforcement learning and dictionary learning methods that have been used for white matter tract, nerve and pathway recognition as well as whole brain streamlines or whole brain tractogram creation. The contribution is to discuss both tractography and tract recognition methods, in addition to extending previous related reviews with most recent methods, covering architectures as well as network details, assess the efficiency of learning-based methods through a comprehensive comparison in this field, and finally demonstrate the important role of learning-based methods in tractography.

Long-Term Prognostic Implications of Thoracic Aortic Calcification on CT Using Artificial Intelligence-Based Quantification in a Screening Population: A Two-Center Study.

Lee JE, Kim NY, Kim YH, Kwon Y, Kim S, Han K, Suh YJ

pubmed logopapersJun 4 2025
<b>BACKGROUND.</b> The importance of including the thoracic aortic calcification (TAC), in addition to coronary artery calcification (CAC), in prognostic assessments has been difficult to determine, partly due to greater challenge in performing standardized TAC assessments. <b>OBJECTIVE.</b> The purpose of this study was to evaluate long-term prognostic implications of TAC assessed using artificial intelligence (AI)-based quantification on routine chest CT in a screening population. <b>METHODS.</b> This retrospective study included 7404 asymptomatic individuals (median age, 53.9 years; 5875 men, 1529 women) who underwent nongated noncontrast chest CT as part of a national general health screening program at one of two centers from January 2007 to December 2014. A commercial AI program quantified TAC and CAC using Agatston scores, which were stratified into categories. Radiologists manually quantified TAC and CAC in 2567 examinations. The role of AI-based TAC categories in predicting major adverse cardiovascular events (MACE) and all-cause mortality (ACM), independent of AI-based CAC categories as well as clinical and laboratory variables, was assessed by multivariable Cox proportional hazards models using data from both centers and concordance statistics from prognostic models developed and tested using center 1 and center 2 data, respectively. <b>RESULTS.</b> AI-based and manual quantification showed excellent agreement for TAC and CAC (concordance correlation coefficient: 0.967 and 0.895, respectively). The median observation periods were 7.5 years for MACE (383 events in 5342 individuals) and 11.0 years for ACM (292 events in 7404 individuals). When adjusted for AI-based CAC categories along with clinical and laboratory variables, the risk for MACE was not independently associated with any AI-based TAC category; risk of ACM was independently associated with AI-based TAC score of 1001-3000 (HR = 2.14, <i>p</i> = .02) but not with other AI-based TAC categories. When prognostic models were tested, the addition of AI-based TAC categories did not improve model fit relative to models containing clinical variables, laboratory variables, and AI-based CAC categories for MACE (concordance index [C-index] = 0.760-0.760, <i>p</i> = .81) or ACM (C-index = 0.823-0.830, <i>p</i> = .32). <b>CONCLUSION.</b> The addition of TAC to models containing CAC provided limited improvement in risk prediction in an asymptomatic screening population undergoing CT. <b>CLINICAL IMPACT.</b> AI-based quantification provides a standardized approach for better understanding the potential role of TAC as a predictive imaging biomarker.

UltraBones100k: A reliable automated labeling method and large-scale dataset for ultrasound-based bone surface extraction.

Wu L, Cavalcanti NA, Seibold M, Loggia G, Reissner L, Hein J, Beeler S, Viehöfer A, Wirth S, Calvet L, Fürnstahl P

pubmed logopapersJun 4 2025
Ultrasound-based bone surface segmentation is crucial in computer-assisted orthopedic surgery. However, ultrasound images have limitations, including a low signal-to-noise ratio, acoustic shadowing, and speckle noise, which make interpretation difficult. Existing deep learning models for bone segmentation rely primarily on costly manual labeling by experts, limiting dataset size and model generalizability. Additionally, the complexity of ultrasound physics and acoustic shadow makes the images difficult for humans to interpret, leading to incomplete labels in low-intensity and anechoic regions and limiting model performance. To advance the state-of-the-art in ultrasound bone segmentation and establish effective model benchmarks, larger and higher-quality datasets are needed. We propose a methodology for collecting ex-vivo ultrasound datasets with automatically generated bone labels, including anechoic regions. The proposed labels are derived by accurately superimposing tracked bone Computed Tomography (CT) models onto the tracked ultrasound images. These initial labels are refined to account for ultrasound physics. To clinically evaluate the proposed method, an expert physician from our university hospital specialized in orthopedic sonography assessed the quality of the generated bone labels. A neural network for bone segmentation is trained on the collected dataset and its predictions are compared to expert manual labels, evaluating accuracy, completeness, and F1-score. We collected UltraBones100k, the largest known dataset comprising 100k ex-vivo ultrasound images of human lower limbs with bone annotations, specifically targeting the fibula, tibia, and foot bones. A Wilcoxon signed-rank test with Bonferroni correction confirmed that the bone alignment after our optimization pipeline significantly improved the quality of bone labeling (p<0.001). The model trained on UltraBones100k consistently outperforms manual labeling in all metrics, particularly in low-intensity regions (at a distance threshold of 0.5 mm: 320% improvement in completeness, 27.4% improvement in accuracy, and 197% improvement in F1 score) CONCLUSION:: This work is promising to facilitate research and clinical translation of ultrasound imaging in computer-assisted interventions, particularly for applications such as 2D bone segmentation, 3D bone surface reconstruction, and multi-modality bone registration.

Vascular segmentation of functional ultrasound images using deep learning.

Sebia H, Guyet T, Pereira M, Valdebenito M, Berry H, Vidal B

pubmed logopapersJun 4 2025
Segmentation of medical images is a fundamental task with numerous applications. While MRI, CT, and PET modalities have significantly benefited from deep learning segmentation techniques, more recent modalities, like functional ultrasound (fUS), have seen limited progress. fUS is a non invasive imaging method that measures changes in cerebral blood volume (CBV) with high spatio-temporal resolution. However, distinguishing arterioles from venules in fUS is challenging due to opposing blood flow directions within the same pixel. Ultrasound localization microscopy (ULM) can enhance resolution by tracking microbubble contrast agents but is invasive, and lacks dynamic CBV quantification. In this paper, we introduce the first deep learning-based application for fUS image segmentation, capable of differentiating signals based on vertical flow direction (upward vs. downward), using ULM-based automatic annotation, and enabling dynamic CBV quantification. In the cortical vasculature, this distinction in flow direction provides a proxy for differentiating arteries from veins. We evaluate various UNet architectures on fUS images of rat brains, achieving competitive segmentation performance, with 90% accuracy, a 71% F1 score, and an IoU of 0.59, using only 100 temporal frames from a fUS stack. These results are comparable to those from tubular structure segmentation in other imaging modalities. Additionally, models trained on resting-state data generalize well to images captured during visual stimulation, highlighting robustness. Although it does not reach the full granularity of ULM, the proposed method provides a practical, non-invasive and cost-effective solution for inferring flow direction-particularly valuable in scenarios where ULM is not available or feasible. Our pipeline shows high linear correlation coefficients between signals from predicted and actual compartments, showcasing its ability to accurately capture blood flow dynamics.

AI-powered segmentation of bifid mandibular canals using CBCT.

Gumussoy I, Demirezer K, Duman SB, Haylaz E, Bayrakdar IS, Celik O, Syed AZ

pubmed logopapersJun 4 2025
Accurate segmentation of the mandibular and bifid canals is crucial in dental implant planning to ensure safe implant placement, third molar extractions and other surgical interventions. The objective of this study is to develop and validate an innovative artificial intelligence tool for the efficient, and accurate segmentation of the mandibular and bifid canals on CBCT. CBCT data were screened to identify patients with clearly visible bifid canal variations, and their DICOM files were extracted. These DICOM files were then imported into the 3D Slicer<sup>®</sup> open-source software, where bifid canals and mandibular canals were annotated. The annotated data, along with the raw DICOM files, were processed using the nnU-Netv2 training model by CranioCatch AI software team. 69 anonymized CBCT volumes in DICOM format were converted to NIfTI file format. The method, utilizing nnU-Net v2, accurately predicted the voxels associated with the mandibular canal, achieving an intersection of over 50% in nearly all samples. The accuracy, Dice score, precision, and recall scores for the mandibular canal/bifid canal were determined to be 0.99/0.99, 0.82/0.46, 0.85/0.70, and 0.80/0.42, respectively. Despite the bifid canal segmentation not meeting the expected level of success, the findings indicate that the proposed method shows promising and has the potential to be utilized as a supplementary tool for mandibular canal segmentation. Due to the significance of accurately evaluating the mandibular canal before surgery, the use of artificial intelligence could assist in reducing the burden on practitioners by automating the complicated and time-consuming process of tracing and segmenting this structure. Being able to distinguish bifid channels with artificial intelligence will help prevent neurovascular problems that may occur before or after surgery.

Advancing prenatal healthcare by explainable AI enhanced fetal ultrasound image segmentation using U-Net++ with attention mechanisms.

Singh R, Gupta S, Mohamed HG, Bharany S, Rehman AU, Ghadi YY, Hussen S

pubmed logopapersJun 4 2025
Prenatal healthcare development requires accurate automated techniques for fetal ultrasound image segmentation. This approach allows standardized evaluation of fetal development by minimizing time-exhaustive processes that perform poorly due to human intervention. This research develops a segmentation framework through U-Net++ with ResNet backbone features which incorporates attention components for enhancing extraction of features in low contrast, noisy ultrasound data. The model leverages the nested skip connections of U-Net++ and the residual learning of ResNet-34 to achieve state-of-the-art segmentation accuracy. Evaluations of the developed model against the vast fetal ultrasound image collection yielded superior results by reaching 97.52% Dice coefficient as well as 95.15% Intersection over Union (IoU), and 3.91 mm Hausdorff distance. The pipeline integrated Grad-CAM++ allows explanations of the model decisions for clinical utility and trust enhancement. The explainability component enables medical professionals to study how the model functions, which creates clear and proven segmentation outputs for better overall reliability. The framework fills in the gap between AI automation and clinical interpretability by showing important areas which affect predictions. The research shows that deep learning combined with Explainable AI (XAI) operates to generate medical imaging solutions that achieve high accuracy. The proposed system demonstrates readiness for clinical workflows due to its ability to deliver a sophisticated prenatal diagnostic instrument that enhances healthcare results.

Digital removal of dermal denticle layer using geometric AI from 3D CT scans of shark craniofacial structures enhances anatomical precision.

Kim SW, Yuen AHL, Kim HW, Lee S, Lee SB, Lee YM, Jung WJ, Poon CTC, Park D, Kim S, Kim SG, Kang JW, Kwon J, Jo SJ, Giri SS, Park H, Seo JP, Kim DS, Kim BY, Park SC

pubmed logopapersJun 4 2025
Craniofacial morphometrics in sharks provide crucial insights into evolutionary history, geographical variation, sexual dimorphism, and developmental patterns. However, the fragile cartilaginous nature of shark craniofacial skeleton poses significant challenges for traditional specimen preparation, often resulting in damaged cranial landmarks and compromised measurement accuracy. While computed tomography (CT) offers a non-invasive alternative for anatomical observation, the high electron density of dermal denticles in sharks creates a unique challenge, obstructing clear visualization of internal structures in three-dimensional volume-rendered images (3DVRI). This study presents an artificial intelligence (AI)-based solution using machine-learning algorithms for digitally removing dermal denticle layer from CT scans of shark craniofacial skeleton. We developed a geometric AI-driven software (SKINPEELER) that selectively removes high-intensity voxels corresponding to dermal denticle layer while preserving underlying anatomical structures. We evaluated this approach using CT scans from 20 sharks (16 Carcharhinus brachyurus, 2 Alopias vulpinus, 1 Sphyrna lewini, and 1 Prionace glauca), applying our AI-driven software to process the Digital Imaging and Communications in Medicine (DICOM) images. The processed scans were reconstructed using bone reconstruction algorithms to enable precise craniofacial measurements. We assessed the accuracy of our method by comparing measurements from the processed 3DVRIs with traditional manual measurements. The AI-assisted approach demonstrated high accuracy (86.16-98.52%) relative to manual measurements. Additionally, we evaluated reproducibility and repeatability using intraclass correlation coefficients (ICC), finding high reproducibility (ICC: 0.456-0.998) and repeatability (ICC: 0.985-1.000 for operator 1 and 0.882-0.999 for operator 2). Our results indicate that this AI-enhanced digital denticle removal technique, combined with 3D CT reconstruction, provides a reliable and non-destructive alternative to traditional specimen preparation methods for investigating shark craniofacial morphology. This novel approach enhances measurement precision while preserving specimen integrity, potentially advancing various aspects of shark research including evolutionary studies, conservation efforts, and anatomical investigations.

Validation study comparing Artificial intelligence for fully automatic aortic aneurysms Segmentation and diameter Measurements On contrast and non-contrast enhanced computed Tomography (ASMOT).

Gatinot A, Caradu C, Stephan L, Foret T, Rinckenbach S

pubmed logopapersJun 4 2025
Accurate aortic diameter measurements are essential for diagnosis, surveillance, and procedural planning in aortic disease. Semi-automatic methods remain widely used but require manual corrections, which can be time-consuming and operator-dependent. Artificial intelligence (AI)-driven fully automatic methods may offer improved efficiency and measurement accuracy. This study aims to validate a fully automatic method against a semi-automatic approach using computed tomography angiography (CTA) and non-contrast CT scans. A monocentric retrospective comparative study was conducted on patients who underwent endovascular aortic repair (EVAR) for infrarenal, juxta-renal or thoracic aneurysms and a control group. Maximum aortic wall-to-wall diameters were measured before and after repair using a fully automatic software (PRAEVAorta2®, Nurea, Bordeaux, France) and compared to measurements performed by two vascular surgeons using a semi-automatic approach on CTA and non-contrast CT scans. Correlation coefficients (Pearson's R) and absolute differences were calculated to assess agreement. A total of 120 CT scans (60 CTA and 60 non-contrast CT) were included, comprising 23 EVAR, 4 thoracic EVAR, 1 fenestrated EVAR, and 4 control cases. Strong correlations were observed between the fully automatic and semi-automatic measurements in both CTA and non-contrast CT. For CTA, correlation coefficients ranged from 0.94 to 0.96 (R<sup>2</sup> = 0.88-0.92), while for non-contrast CT, they ranged from 0.87 to 0.89 (R<sup>2</sup> = 0.76-0.79). Median absolute differences in aortic diameter measurements varied between 1.1 mm and 4.2 mm across the different anatomical locations. The fully automatic method demonstrated a significantly faster processing time, with a median execution time of 73 seconds (IQR: 57-91) compared to 700 (IQR: 613-800) for the semi-automatic method (p < 0.001). The fully automatic method demonstrated strong agreement with semi-automatic measurements for both CTA and non-contrast CT, before and after endovascular repair in different aortic locations, with significantly reduced analysis time. This method could improve workflow efficiency in clinical practice and research applications.
Page 4 of 29286 results
Show
per page
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.