AI-based synthetic simulation CT generation from diagnostic CT for simulation-free workflow of spinal palliative radiotherapy
Authors
Affiliations (1)
Affiliations (1)
- Baylor St Luke\'s Medical Center
Abstract
Purpose/ObjectiveCurrent radiotherapy (RT) planning workflows rely on pre-treatment simulation CT (sCT), which can significantly delay treatment initiation, particularly in resource-constrained settings. While diagnostic CT (dCT) offers a potential alternative for expedited planning, inherent geometric discrepancies from sCT in patient positioning and table curvature limit its direct use for accurate RT planning. This study presents a novel AI-based method designed to overcome these limitations by generating synthetic simulation CT (ssCT) directly from standard dCT for spinal palliative RT, aiming to eliminate the need for sCT and accelerate the treatment workflow. Materials/MethodsssCTs were generated using two neural network models to adjust spine position and correct table curvature. The neural networks use a three-layer structure (ReLU activation), optimized by Adam with MSE loss and MAE metrics. The models were trained on paired dCT and sCT images from 30 patients undergoing palliative spine radiotherapy from a safety-net hospital, with 22 cases used for training and 8 for testing. To explore institutional dependence, the models were also tested on 7 patients from an academic medical center (AMC). To evaluate ssCT accuracy, both ssCT and dCT were aligned with sCT using the same frame of reference rigid registration on bone windows. Dosimetric differences were assessed by comparing dCT vs. sCT and ssCT vs. sCT, quantifying deviations in dose-volume histogram (DVH) metrics, including Dmean, Dmax, D95, D99, V100, V107, and root-mean-square (RMS) differences. The imaging and plan quality was assessed by four radiation oncologists using a Likert score. The Wilcoxon signed-rank test was used to determine whether there is a significant difference between the two methods. ResultsFor the safety-net hospital cases, the generated ssCT demonstrated significantly improved geometric and dosimetric accuracy compared to dCT. ssCT reduced the mean difference in key dosimetric parameters (e.g., Dmean difference decreased from 2.0% for dCT vs. sCT to 0.57% for ssCT vs. sCT with significant improvement under the Wilcoxon signed-rank test) and achieved a significant reduction in the RMS difference of DVH curves (from 6.4% to 2.2%). Furthermore, physician evaluations showed that ssCT was consistently rated as significantly superior for treatment planning images (mean scores improving from "Acceptable" for dCT to "Good to Perfect" for ssCT), reflecting improved confidence in target and tissue positioning. In the academic medical-center cohort--where technologists already apply meticulous pre-scan alignment--ssCT still yielded statistically significant, though smaller, improvements in several dosimetric endpoints and in observer ratings. ConclusionOur AI-driven approach successfully generates ssCT from dCT that achieves geometric and dosimetric accuracy comparable to sCT for spinal palliative RT planning. By specifically addressing critical discrepancies like spine position and table curvature, this method offers a robust approach to bypass the need for dedicated sCT simulations. This advancement has the potential to significantly streamline the RT workflow, reduce treatment uncertainties, and accelerate time to treatment, offering a highly promising solution for improving access to timely and accurate radiotherapy, especially in limited-resource environments.