Comparing Artificial Intelligence and Traditional Regression Models in Lung Cancer Risk Prediction Using A Systematic Review and Meta-Analysis.

Authors

Leonard S,Patel MA,Zhou Z,Le H,Mondal P,Adams SJ

Affiliations (2)

  • College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
  • College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Medical Imaging, Royal University Hospital, Saskatoon, Saskatchewan, Canada. Electronic address: [email protected].

Abstract

Accurately identifying individuals who are at high risk of lung cancer is critical to optimize lung cancer screening with low-dose CT (LDCT). We sought to compare the performance of traditional regression models and artificial intelligence (AI)-based models in predicting future lung cancer risk. A systematic review and meta-analysis were conducted with reporting according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched MEDLINE, Embase, Scopus, and the Cumulative Index to Nursing and Allied Health Literature databases for studies reporting the performance of AI or traditional regression models for predicting lung cancer risk. Two researchers screened articles, and a third researcher resolved conflicts. Model characteristics and predictive performance metrics were extracted. The quality of studies was assessed using the Prediction model Risk of Bias Assessment Tool. A meta-analysis assessed the discrimination performance of models, based on area under the receiver operating characteristic curve (AUC). One hundred forty studies met inclusion criteria and included 185 traditional and 64 AI-based models. Of these, 16 AI models and 65 traditional models have been externally validated. The pooled AUC of external validations of AI models was 0.82 (95% confidence interval [CI], 0.80-0.85), and the pooled AUC for traditional regression models was 0.73 (95% CI, 0.72-0.74). In a subgroup analysis, AI models that included LDCT had a pooled AUC of 0.85 (95% CI, 0.82-0.88). Overall risk of bias was high for both AI and traditional models. AI-based models, particularly those using imaging data, show promise for improving lung cancer risk prediction over traditional regression models. Future research should focus on prospective validation of AI models and direct comparisons with traditional methods in diverse populations.

Topics

Lung NeoplasmsArtificial IntelligenceTomography, X-Ray ComputedJournal ArticleSystematic ReviewMeta-AnalysisComparative Study

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.