A hybrid AI method for lung cancer classification using explainable AI techniques.

May 8, 2025pubmed logopapers

Authors

Shivwanshi RR,Nirala NS

Affiliations (2)

  • Department of Biomedical Engineering, National Institute of Technology Raipur, 492010, India. Electronic address: [email protected].
  • Department of Biomedical Engineering, National Institute of Technology Raipur, 492010, India. Electronic address: [email protected].

Abstract

The use of Artificial Intelligence (AI) methods for the analysis of CT (computed tomography) images has greatly contributed to the development of an effective computer-assisted diagnosis (CAD) system for lung cancer (LC). However, complex structures, multiple radiographic interrelations, and the dynamic locations of abnormalities within lung CT images make extracting relevant information to process and implement LC CAD systems difficult. These prominent problems are addressed in this paper by presenting a hybrid method of LC malignancy classification, which may help researchers and experts properly engineer the model's performance by observing how the model makes decisions. The proposed methodology is named IncCat-LCC: Explainer (Inception Net Cat Boost LC Classification: Explainer), which consists of feature extraction (FE) using the handcrafted radiomic Feature (HcRdF) extraction technique, InceptionNet CNN Feature (INCF) extraction, Vision Transformer Feature (ViTF) extraction, and XGBOOST (XGB)-based feature selection, and the GPU based CATBOOST (CB) classification technique. The proposed framework achieves better and highest performance scores for lung nodule multiclass malignancy classification when evaluated using metrics such as accuracy, precision, recall, f-1 score, specificity, and area under the roc curve as 96.74 %, 93.68 %, 96.74 %, 95.19 %, 98.47 % and 99.76 % consecutively for classifying highly normal class. Observing the explainable artificial intelligence (XAI) explanations will help readers understand the model performance and the statistical outcomes of the evaluation parameter. The work presented in this article may improve the existing LC CAD system and help assess the important parameters using XAI to recognize the factors contributing to enhanced performance and reliability.

Topics

Journal Article
Get Started

Upload your X-ray image and get interpretation.

Upload now →

Disclaimer: X-ray Interpreter's AI-generated results are for informational purposes only and not a substitute for professional medical advice. Always consult a healthcare professional for medical diagnosis and treatment.