Automated neuroradiological support systems for multiple cerebrovascular disease markers - A systematic review and meta-analysis.

Authors

Phitidis J,O'Neil AQ,Whiteley WN,Alex B,Wardlaw JM,Bernabeu MO,Hernández MV

Affiliations (6)

  • Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH164SB, United Kingdom; Canon Medical Research Europe, Bonnington Bond, 2 Anderson Place, Edinburgh, EH65NP, United Kingdom. Electronic address: [email protected].
  • Canon Medical Research Europe, Bonnington Bond, 2 Anderson Place, Edinburgh, EH65NP, United Kingdom; School of Engineering, University of Edinburgh, Sanderson Building, Edinburgh, EH93FB, United Kingdom.
  • Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH164SB, United Kingdom.
  • School of Literature, Languages and Culture, University of Edinburgh, 50 George Square, Edinburgh, EH89JY, United Kingdom; Edinburgh Futures Institute, University of Edinburgh, 1 Lauriston Place, Edinburgh, EH39EF, United Kingdom.
  • Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH164SB, United Kingdom; UK Dementia Research Institute, Centre at The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH164SB, United Kingdom.
  • Usher Institute, University of Edinburgh, NINE, 9 Little France Road, Edinburgh, EH164UX, United Kingdom.

Abstract

Cerebrovascular diseases (CVD) can lead to stroke and dementia. Stroke is the second leading cause of death world wide and dementia incidence is increasing by the year. There are several markers of CVD that are visible on brain imaging, including: white matter hyperintensities (WMH), acute and chronic ischaemic stroke lesions (ISL), lacunes, enlarged perivascular spaces (PVS), acute and chronic haemorrhagic lesions, and cerebral microbleeds (CMB). Brain atrophy also occurs in CVD. These markers are important for patient management and intervention, since they indicate elevated risk of future stroke and dementia. We systematically reviewed automated systems designed to support radiologists reporting on these CVD imaging findings. We considered commercially available software and research publications which identify at least two CVD markers. In total, we included 29 commercial products and 13 research publications. Two distinct types of commercial support system were available: those which identify acute stroke lesions (haemorrhagic and ischaemic) from computed tomography (CT) scans, mainly for the purpose of patient triage; and those which measure WMH and atrophy regionally and longitudinally. In research, WMH and ISL were the markers most frequently analysed together, from magnetic resonance imaging (MRI) scans; lacunes and PVS were each targeted only twice and CMB only once. For stroke, commercially available systems largely support the emergency setting, whilst research systems consider also follow-up and routine scans. The systems to quantify WMH and atrophy are focused on neurodegenerative disease support, where these CVD markers are also of significance. There are currently no openly validated systems, commercially, or in research, performing a comprehensive joint analysis of all CVD markers (WMH, ISL, lacunes, PVS, haemorrhagic lesions, CMB, and atrophy).

Topics

Cerebrovascular DisordersNeuroimagingJournal ArticleMeta-AnalysisSystematic Review

Ready to Sharpen Your Edge?

Join hundreds of your peers who rely on RadAI Slice. Get the essential weekly briefing that empowers you to navigate the future of radiology.

We respect your privacy. Unsubscribe at any time.