
University of Osaka develops a high-precision, ultra-energy-efficient EEG system based on waveform similarity and compressed sensing.
Key Details
- 1New EEG measurement system achieves 72μW total power consumption.
- 2The approach leverages waveform similarity and compressed sensing instead of black-box generative AI.
- 3System built using commercially available microcontrollers (nRF52840).
- 4Demonstrated normalized mean squared error (NMSE) of 0.116 across 500 measurements.
- 5Targets wearable, long-term monitoring, and self-powered IoT healthcare devices.
Why It Matters

Source
EurekAlert
Related News

Chinese Researchers Unveil Photonic Chip for Ultra-Fast Image Processing
A new photonic chip achieves image processing at 25 million frames per second with high energy efficiency, promising major advances in real-time imaging and AI applications.

AI Model Predicts Growth Spurts from Pediatric Neck X-rays for Orthodontics
Korean researchers developed an AI system (ARNet-v2) that predicts children's growth spurts from neck X-rays to enhance orthodontic treatment planning.

Dana-Farber Showcases AI and Clinical Trial Advances at ESMO 2025
Dana-Farber researchers present major cancer clinical trial results, including AI-driven data analysis, at ESMO Congress 2025.