
University of Osaka develops a high-precision, ultra-energy-efficient EEG system based on waveform similarity and compressed sensing.
Key Details
- 1New EEG measurement system achieves 72μW total power consumption.
- 2The approach leverages waveform similarity and compressed sensing instead of black-box generative AI.
- 3System built using commercially available microcontrollers (nRF52840).
- 4Demonstrated normalized mean squared error (NMSE) of 0.116 across 500 measurements.
- 5Targets wearable, long-term monitoring, and self-powered IoT healthcare devices.
Why It Matters

Source
EurekAlert
Related News

AI Time Series Model Boosts EEG-Based Seizure Prediction by 44%
UC Santa Cruz engineers' 'future-guided' deep learning improves seizure prediction accuracy using EEG data.

NTU Singapore to Launch Master's in AI in Medicine for Clinicians and Technologists
NTU Singapore will launch a new MSc in Artificial Intelligence in Medicine to train clinicians and technologists in clinical AI applications from 2026.

AI Accurately Predicts Lymph Node Extension in HPV-related Throat Cancer via CT
An AI pipeline automates lymph node segmentation and extranodal extension prediction from CT in HPV-positive oropharyngeal cancer, correlating with patient outcomes.