
University of Osaka develops a high-precision, ultra-energy-efficient EEG system based on waveform similarity and compressed sensing.
Key Details
- 1New EEG measurement system achieves 72μW total power consumption.
- 2The approach leverages waveform similarity and compressed sensing instead of black-box generative AI.
- 3System built using commercially available microcontrollers (nRF52840).
- 4Demonstrated normalized mean squared error (NMSE) of 0.116 across 500 measurements.
- 5Targets wearable, long-term monitoring, and self-powered IoT healthcare devices.
Why It Matters

Source
EurekAlert
Related News

MD Anderson Unveils New AI Genomics Insights and Therapeutic Advances
MD Anderson reports breakthroughs in cancer therapeutics and provides critical insights into AI models for genomic analysis.

UCLA Researchers Present AI, Blood Biomarker Advances at SABCS 2025
UCLA Health researchers unveil major advances in breast cancer AI pathology, liquid biopsy, and biomarker strategies at the 2025 SABCS.

SH17 Dataset Boosts AI Detection of PPE for Worker Safety
University of Windsor researchers released SH17, a 8,099-image open dataset for AI-driven detection of personal protective equipment (PPE) in manufacturing settings.