
University of Osaka develops a high-precision, ultra-energy-efficient EEG system based on waveform similarity and compressed sensing.
Key Details
- 1New EEG measurement system achieves 72μW total power consumption.
- 2The approach leverages waveform similarity and compressed sensing instead of black-box generative AI.
- 3System built using commercially available microcontrollers (nRF52840).
- 4Demonstrated normalized mean squared error (NMSE) of 0.116 across 500 measurements.
- 5Targets wearable, long-term monitoring, and self-powered IoT healthcare devices.
Why It Matters

Source
EurekAlert
Related News

Deep Learning AI Outperforms Clinic Prognostics for Colorectal Cancer Recurrence
A new deep learning model using histopathology images identifies recurrence risk in stage II colorectal cancer more effectively than standard clinical predictors.

AI Reveals Key Health System Levers for Cancer Outcomes Globally
AI-based analysis identifies the most impactful policy and resource factors for improving cancer survival across 185 countries.

Dual-Branch Graph Attention Network Predicts ECT Success in Teen Depression
Researchers developed a dual-branch graph attention network that uses structural and functional MRI data to accurately predict individual responses to electroconvulsive therapy in adolescents with major depressive disorder.