
Researchers developed and validated an AI model that simultaneously detects multiple genetic markers in colorectal cancer tissue slides.
Key Details
- 1Study led by EKFZ for Digital Health at TU Dresden analyzed nearly 2,000 digitized pathology slides across seven independent cohorts in Europe and the US.
- 2The AI 'multi-target transformer' model predicts a wide range of genetic alterations, including microsatellite instability and BRAF/RNF43 mutations, from routine histological sections.
- 3Model performance matched or exceeded single-target models for key biomarkers and revealed the ability to identify shared morphological patterns tied to multiple mutations.
- 4Findings published in The Lancet Digital Health, with plans to extend methods to other cancers.
- 5Collaboration involved multiple academic centers, highlighting interdisciplinary and international partnership.
Why It Matters
This work represents a substantial advance for digital pathology and AI-driven precision diagnostics, potentially enabling faster, more comprehensive, and scalable assessment of genetic biomarkers directly from standard tissue images. Faster and lower-cost pre-screening for key mutations could streamline patient selection for molecular testing and personalize colorectal cancer care.

Source
EurekAlert
Related News

•EurekAlert
AI Model Accurately Predicts Blood Loss Risk in Liposuction
A machine learning model predicts blood loss during high-volume liposuction with 94% accuracy.

•EurekAlert
AI-Driven CT Tool Predicts Cancer Spread in Oropharyngeal Tumors
Researchers have created an AI tool that uses CT imaging to predict the spread risk of oropharyngeal cancer, offering improved treatment stratification.

•EurekAlert
AI Model PRTS Predicts Spatial Transcriptomics From H&E Histology Images
Researchers developed PRTS, a deep learning model that infers single-cell spatial transcriptomics from standard H&E-stained tissue images.