
Researchers developed and validated an AI model that simultaneously detects multiple genetic markers in colorectal cancer tissue slides.
Key Details
- 1Study led by EKFZ for Digital Health at TU Dresden analyzed nearly 2,000 digitized pathology slides across seven independent cohorts in Europe and the US.
- 2The AI 'multi-target transformer' model predicts a wide range of genetic alterations, including microsatellite instability and BRAF/RNF43 mutations, from routine histological sections.
- 3Model performance matched or exceeded single-target models for key biomarkers and revealed the ability to identify shared morphological patterns tied to multiple mutations.
- 4Findings published in The Lancet Digital Health, with plans to extend methods to other cancers.
- 5Collaboration involved multiple academic centers, highlighting interdisciplinary and international partnership.
Why It Matters

Source
EurekAlert
Related News

Major Study Reveals Barriers to Implementing AI Chest Diagnostics in NHS Hospitals
A UCL-led study identifies significant challenges in deploying AI tools for chest diagnostics across NHS hospitals in England.

AI Model Enhances Prediction of Infection Risks from Oral Mucositis in Stem Cell Transplant Patients
Researchers developed an explainable AI tool that accurately predicts infection risks related to oral mucositis in hematopoietic stem cell transplant patients.

AI-Enabled Hydrogel Patch Provides Long-Term High-Fidelity EEG and Attention Monitoring
Researchers unveil a reusable hydrogel patch with machine learning capabilities for high-fidelity EEG recording and attention assessment.