
Chinese scientists have developed a reconfigurable integrated photonic chip capable of running diverse neural networks, including those for image and speech processing, with high efficiency.
Key Details
- 1The chip integrates microring resonators and Mach-Zehnder interferometers, powered by a soliton microcomb light source.
- 2Supports fully-connected, convolutional, and recurrent neural networks within a single hardware architecture.
- 3Area efficiency reaches up to 2.45 TOPS/mm² at 10 GHz frequency.
- 4Demonstrated on tasks: image classification (MNIST 92.93% accuracy, CIFAR-10 56.57%), sentiment analysis (IMDB 80.81%), and speech recognition.
- 5Device enables dual-path computation per resonator, doubling throughput versus traditional schemes.
Why It Matters

Source
EurekAlert
Related News

AI Model Improves Prediction of Knee Osteoarthritis Progression Using MRI and Biomarkers
A new AI-assisted model that combines MRI, biochemical, and clinical data improves predictions of worsening knee osteoarthritis.

AI Model Predicts Multiple Genetic Markers from Colorectal Pathology Slides
Researchers developed and validated an AI model that simultaneously detects multiple genetic markers in colorectal cancer tissue slides.

Study Warns: AI Alone Is Not Enough in Critical Healthcare Decisions
Evaluating both AI algorithms and human users is key for safe adoption in high-stakes healthcare settings, according to an Ohio State study.