An explainable deep learning AI model using gadoxetic acid-enhanced MRI improves sensitivity in diagnosing hepatocellular carcinoma (HCC).
Key Details
- 1The AI model was trained on 1,023 liver lesions from 839 patients using multi-phase MRI.
- 2It classified lesions as HCC or non-HCC and provided visual explanations (LI-RADS feature identification).
- 3On a test set, the model achieved AUC 0.97 for HCC diagnosis.
- 4Compared to LI-RADS 5, AI had higher sensitivity (91.6% vs. 74.8%) with similar specificity (90.7% vs. 96%).
- 5Radiologists assisted by the AI showed improved sensitivity (up to 89%) with no loss in specificity.
- 6Explainability is highlighted, aligning with regulatory emphasis on interpretable AI.
Why It Matters
This study demonstrates that explainable AI models can significantly increase diagnostic sensitivity for HCC on MRI, supporting radiologists without sacrificing specificity. The focus on explainability is crucial for regulatory compliance and clinical trust in AI tools for radiology.

Source
AuntMinnie
Related News

•AuntMinnie
AI Enables Safe 75% Gadolinium Reduction in Breast MRI Without Losing Sensitivity
AI-enhanced breast MRI with a 75% reduced gadolinium dose maintained diagnostic sensitivity comparable to full-dose protocols.

•Cardiovascular Business
Deep Learning AI Model Detects Coronary Microvascular Dysfunction Via ECG
A new AI algorithm rapidly detects coronary microvascular dysfunction using ECGs, with validation incorporating PET imaging.

•AuntMinnie
Study: Patients Prefer AI in Radiology as Assistive, Not Standalone Tool
Survey finds patients support AI-assisted radiology but not AI-only interpretations.