An explainable deep learning AI model using gadoxetic acid-enhanced MRI improves sensitivity in diagnosing hepatocellular carcinoma (HCC).
Key Details
- 1The AI model was trained on 1,023 liver lesions from 839 patients using multi-phase MRI.
- 2It classified lesions as HCC or non-HCC and provided visual explanations (LI-RADS feature identification).
- 3On a test set, the model achieved AUC 0.97 for HCC diagnosis.
- 4Compared to LI-RADS 5, AI had higher sensitivity (91.6% vs. 74.8%) with similar specificity (90.7% vs. 96%).
- 5Radiologists assisted by the AI showed improved sensitivity (up to 89%) with no loss in specificity.
- 6Explainability is highlighted, aligning with regulatory emphasis on interpretable AI.
Why It Matters

Source
AuntMinnie
Related News

Toronto Study: LLMs Must Cite Sources for Radiology Decision Support
University of Toronto researchers found that large language models (LLMs) such as DeepSeek V3 and GPT-4o offer promising support for radiology decision-making in pancreatic cancer when their recommendations cite guideline sources.

AI Model Using Mammograms Enhances Five-Year Breast Cancer Risk Assessment
A new image-only AI model more accurately predicts five-year breast cancer risk than breast density alone, according to multinational research presented at RSNA 2025.

AI Model Uses CT Scans to Reveal Biomarker for Chronic Stress
Researchers developed an AI model to measure chronic stress using adrenal gland volume on routine CT scans.