
A Dutch research team demonstrated that a 'hybrid' AI strategy can reduce radiologist workload in mammography screening by nearly 40% without affecting performance.
Key Details
- 1'Hybrid' AI workflow allows standalone AI to interpret confidently assessed mammograms, while uncertain cases go to radiologists.
- 2The study was conducted using historical mammogram datasets.
- 3Radiologists' workload was reduced by approximately 38% with this approach.
- 4There was no decrease in recall or cancer detection rates when using this system.
- 5Findings are published in RSNA's Radiology journal.
Why It Matters

Source
Radiology Business
Related News

Habitat AI Model Improves Risk Stratification of Lung Nodules on LDCT
A 'habitat' AI model outperforms standard 2D approaches in stratifying lung adenocarcinoma risk in subsolid nodules on low-dose CT scans.

AI Model Uses Chest CT to Diagnose and Grade COPD Severity
A machine learning model based on chest CT images accurately diagnoses and grades the severity of COPD.

Hybrid AI-Human Mammography Reading Cuts Workload Without Compromising Cancer Detection
A hybrid AI and radiologist reading strategy for screening mammography reduced radiologist workload by 38% without affecting recall or cancer detection rates.