A machine learning model based on chest CT images accurately diagnoses and grades the severity of COPD.
Key Details
- 1Researchers developed a machine learning model using chest CT data from 173 COPD patients and 176 healthy controls.
- 2The model segments the lung parenchyma, airway, pulmonary artery, and vein, then extracts imaging features.
- 3Diagnostic accuracy for COPD was 95% (training set) and 96% (test set); AUC was 0.98 and 0.97, respectively.
- 4Severity grading accuracy was 78% (training) and 72% (test); AUC was 0.89 and 0.8.
- 5Traditional spirometry tests may be less effective or difficult for some patients, highlighting CT's added value.
Why It Matters
This machine learning approach could offer a more accessible and detailed assessment for COPD diagnosis and severity, especially for patients who struggle with spirometry. Improved diagnostic performance has the potential to personalize care and improve clinical outcomes for COPD patients in radiology practice.

Source
AuntMinnie
Related News

•Radiology Business
Patients Favor AI in Imaging Diagnostics, Hesitate on Triage Use
Survey finds most patients support AI in diagnostic imaging but are reluctant about its use in triage decisions.

•AuntMinnie
Deep Learning AI Outperforms Radiologists in Detecting ENE on CT
A deep learning tool, DeepENE, exceeded radiologist performance in identifying lymph node extranodal extension in head and neck cancers using preoperative CT scans.

•Radiology Business
FDA Clears Multi-Disease AI Screening Platform for CT Imaging
HeartLung Corporation's AI-CVD platform receives FDA clearance to detect multiple diseases from a single CT scan.