A 'habitat' AI model outperforms standard 2D approaches in stratifying lung adenocarcinoma risk in subsolid nodules on low-dose CT scans.
Key Details
- 1The study evaluated a 'habitat' AI model, 2D model, radiomic model, and a combined model for classifying invasiveness and grade of lung adenocarcinoma presenting as subsolid nodules on LDCT.
- 2747 patients with 834 resected lung adenocarcinomas were included, split into training, internal, and external test sets.
- 3On the external test set, the macro-average AUCs were: 2D model 0.87, habitat model 0.92, radiomic model 0.92, and combined model 0.93.
- 4Habitat imaging quantifies spatial heterogeneity by segmenting nodules into subregions based on characteristics like signal intensity.
- 5Habitat and radiomic models both significantly outperformed the traditional 2D approach.
Why It Matters
Habitat AI models offer a novel, more accurate, and interpretable tool for noninvasive risk stratification of subsolid lung nodules, which could enhance early lung cancer screening workflows and reduce interobserver variability among radiologists.

Source
AuntMinnie
Related News

•Radiology Business
Aidoc Receives FDA Breakthrough Status for Multi-Condition CT AI Triage
Aidoc has received FDA Breakthrough Device status for its AI solution that flags multiple critical conditions in CT scans.

•Radiology Business
AI Triage Cuts CT Report Turnaround for Pulmonary Embolism—Daytime Only
FDA-backed study finds AI triage tools reduce radiology CT report turnaround times for pulmonary embolism during peak hours.

•Radiology Business
AI Tool Detects Elusive Epilepsy Lesions Missed by Radiologists
Researchers developed an AI tool that identifies focal cortical dysplasia on imaging, aiding diagnosis and surgical planning for epilepsy.