A 'habitat' AI model outperforms standard 2D approaches in stratifying lung adenocarcinoma risk in subsolid nodules on low-dose CT scans.
Key Details
- 1The study evaluated a 'habitat' AI model, 2D model, radiomic model, and a combined model for classifying invasiveness and grade of lung adenocarcinoma presenting as subsolid nodules on LDCT.
- 2747 patients with 834 resected lung adenocarcinomas were included, split into training, internal, and external test sets.
- 3On the external test set, the macro-average AUCs were: 2D model 0.87, habitat model 0.92, radiomic model 0.92, and combined model 0.93.
- 4Habitat imaging quantifies spatial heterogeneity by segmenting nodules into subregions based on characteristics like signal intensity.
- 5Habitat and radiomic models both significantly outperformed the traditional 2D approach.
Why It Matters
Habitat AI models offer a novel, more accurate, and interpretable tool for noninvasive risk stratification of subsolid lung nodules, which could enhance early lung cancer screening workflows and reduce interobserver variability among radiologists.

Source
AuntMinnie
Related News

•Radiology Business
Hybrid AI Approach Cuts Mammography Workload by 38%
A Dutch research team demonstrated that a 'hybrid' AI strategy can reduce radiologist workload in mammography screening by nearly 40% without affecting performance.

•AuntMinnie
AI Model Uses Chest CT to Diagnose and Grade COPD Severity
A machine learning model based on chest CT images accurately diagnoses and grades the severity of COPD.

•Radiology Business
Better Medicine Raises $7M to Expand Radiology AI for Kidney Lesions
Estonia-based Better Medicine raises nearly $7 million to expand its radiology AI solution and enter the U.S. market.