
A refined AI tool using facial landmark detection improves the objective evaluation of facial palsy severity in clinical videos.
Key Details
- 1Researchers fine-tuned a facial recognition AI model (3D-FAN) for patients with facial palsy using 1,181 images from 196 patients.
- 2Manual annotation of facial keypoints improved the model's accuracy, particularly for eyelids and mouth asymmetry.
- 3The refined tool showed lower error rates in keypoint detection compared to baseline models trained on healthy faces.
- 4Objective ratings from the model may aid treatment planning and outcome assessments.
- 5Authors plan to make the AI model freely available for wider clinical and research use.
Why It Matters

Source
EurekAlert
Related News

Mass General Brigham Spins Off AIwithCare to Transform Clinical Trial Screening
Mass General Brigham has spun out AIwithCare, a company commercializing RECTIFIER, an AI tool that automates and enhances clinical trial patient screening using EHR data.

AI-Driven CT Imaging Predicts Cardiac Events in Large UK Cohort
An AI tool analyzing CCTA images can predict future cardiovascular events and death in patients with suspected stable coronary artery disease.

AI Multimodal Models Improve Breast Cancer Recurrence Risk Prediction
Initial results from an ECOG-ACRIN and Caris Life Sciences collaboration show AI-driven multimodal models can more accurately predict recurrence risk in early-stage breast cancer.