
A refined AI tool using facial landmark detection improves the objective evaluation of facial palsy severity in clinical videos.
Key Details
- 1Researchers fine-tuned a facial recognition AI model (3D-FAN) for patients with facial palsy using 1,181 images from 196 patients.
- 2Manual annotation of facial keypoints improved the model's accuracy, particularly for eyelids and mouth asymmetry.
- 3The refined tool showed lower error rates in keypoint detection compared to baseline models trained on healthy faces.
- 4Objective ratings from the model may aid treatment planning and outcome assessments.
- 5Authors plan to make the AI model freely available for wider clinical and research use.
Why It Matters

Source
EurekAlert
Related News

Chinese Researchers Unveil Photonic Chip for Ultra-Fast Image Processing
A new photonic chip achieves image processing at 25 million frames per second with high energy efficiency, promising major advances in real-time imaging and AI applications.

AI Model Predicts Growth Spurts from Pediatric Neck X-rays for Orthodontics
Korean researchers developed an AI system (ARNet-v2) that predicts children's growth spurts from neck X-rays to enhance orthodontic treatment planning.

Imaging Reveals Skull Changes and Immune Impact in Glioblastoma
Advanced imaging uncovers that glioblastoma affects the skull and immune system, not just the brain.