
A refined AI tool using facial landmark detection improves the objective evaluation of facial palsy severity in clinical videos.
Key Details
- 1Researchers fine-tuned a facial recognition AI model (3D-FAN) for patients with facial palsy using 1,181 images from 196 patients.
- 2Manual annotation of facial keypoints improved the model's accuracy, particularly for eyelids and mouth asymmetry.
- 3The refined tool showed lower error rates in keypoint detection compared to baseline models trained on healthy faces.
- 4Objective ratings from the model may aid treatment planning and outcome assessments.
- 5Authors plan to make the AI model freely available for wider clinical and research use.
Why It Matters

Source
EurekAlert
Related News

AI Model Improves Prediction of Knee Osteoarthritis Progression Using MRI and Biomarkers
A new AI-assisted model that combines MRI, biochemical, and clinical data improves predictions of worsening knee osteoarthritis.

Photonic Chip Enables Versatile Neural Networks for Imaging and Speech AI
Chinese scientists have developed a reconfigurable integrated photonic chip capable of running diverse neural networks, including those for image and speech processing, with high efficiency.

AI Model Predicts Multiple Genetic Markers from Colorectal Pathology Slides
Researchers developed and validated an AI model that simultaneously detects multiple genetic markers in colorectal cancer tissue slides.